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Calculus 2¢-9 Preface

Preface

In this volume I present some examples of applications of Gauf’s and Stokes’s theorems and related
topics, cf. also Calculus 2b, Functions of Several Variables. Since my aim also has been to demonstrate
some solution strategy I have as far as possible structured the examples according to the following
form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.
I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
15th October 2007
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Calculus 2c-9 Gradient fields and integrals

1 Gradient fields and integrals
Example 1.1 Check in each of the following cases if the given vector field
V:R? - R?
is a gradient field. Whenever this is the case one shall also find all the integrals of the gradient field.
1) V(x,y,2) = (2xz exp(2? + y?), 2yz exp(x? + y2), exp(a? + 3?)).
T4z, -y —z,c—Yy).
2293, 2223, 302y 2?).
2% +y?cosx,2y sinz — 4,312 + 2).

3yt22, 42322, —32%y?).

= (
=(
= (s°
=(
= (doy — 32222 + 1,222 + 2, - 2232 — 322).
= (222 + 8wy?, 323y — 3wy, —4y?2° — 2232).
= (y cosh(zy), z + x cosh(zy),y).
— (¥, ¢,z g+ 2).

1
14+ 22y? + 20yz2 + 24

A Gradient fields.

10) V(z,y,2) =

(y,z,2z2).

D Check directly by some manipulation of the rules of calculation if V - dx is a total differential.

ALTERNATIVELY one integrates along a broken line K from (0, 0,0), and then check by taking the
gradient of the result and compare with V.

I 1) We get by some manipulation

V.dx = 2zzexp(a®+y*)dr+2yz exp(z?+y?)dy+exp(a® +y*)dz
=z exp(z?+yH) {22 do+2y dy} +exp(a? +y?)dz
= zexp(z® +y°)d(a® +y?) + exp(a? + y*)dz
= zd(exp(z® +9%)) + 1 - exp(z® + y?)dz
= d(z exp(z® +y?)),

which shows that V is a gradient field and that all its integrals are given by
®(z,y,2) = z exp(z? + %) + k, keR.

ALTERNATIVELY, let K be the broken line

(0,0,0) — (,0,0) — (2,9,0) — (2,9, 2).

By a tangential line integral along this curve we get using that z = 0 along the first two
segments,

T Y z
2,p2) = [Codrs [Mods [ expla? 4 gz = expla? + )
0 0 0
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and the gradient is

Ve = (222 exp(a®+y?), 2yz exp(a®+y?), exp(a® +y7)) = V(z,y, 2),

showing that V is a gradient field and that all integrals are given by

(I)(*Lvy”Z) :ZQXP($2+y2)+k, ke R.

2) By a small manipulation,

V.dx =

(x4 2)dz — (y + 2)dy + (z — y)d=z

d <1.7:2> —d (;gf) + (zdx +xdz) — (2dy + ydz)

2
1
2

1
d<2x2—y2—|—a¢z—yz>,

proving that V is a gradient field with the integrals

P(z,y, 2)

Swedish Institute
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1
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Calculus 2c-9 Gradient fields and integrals

ALTERNATIVELY, we get by a line integration along the usual broken line from (0,0, 0),

O(x,y,2) = /V dx—/ tdt—/ tdt—i—/ x—y

= §x —§y +z(x—vy)
with the gradient
ve=(z+z-y—z2—y) =V(z,y,z).

This proves that V is a gradient field, and the integrals are

1 1
‘1’(3«"7%2)=§$2—§y2+z(x—y)+k:, k € R.
Since e.g.
ov

V.

2 2 3
= - = 2

” 6zy” # . xz°,

the necessary condition for a gradient field is not fulfilled, so V is not a gradient field.

ALTERNATIVELY, let us see what happens if we instead use the method of integrating along
the usual broken line from (0,0, 0):

x Yy z
(2,y,2) = / 0dt +/ 0dt + 3x2y/ t2dt = 2%y2>.
0 0 0
The gradient of this result is

because the two fields do not agree in their first coordinate. Hence, the vector field V is not a
gradient field.
By a small manipulation,
V- dx (23 +y? cos x)dx+(2y sin x —4)dy + (3x2% +2)dz
= (Pdx +x-32%d2) + (y? cosxdr +sinz - 2y dy) — 4dy + 2dz
= d (mz2 +y?sing — 4y—|—23) ,

proving that V is a gradient field with the integrals
O(x,y,2) = v2° + y?sinw — 4y + 22 + k, keR.

ALTERNATIVELY, we get by integrating along the usual broken line from (0,0, 0),

T y z
O(x,y,2) = / 0dt+ / (2tsina — 4)dt + / (3xt? + 2)dt
0 0

0
= y?sinz — 4y + z2° + 2z.

The gradient of this result is
v® = (y?cosx + 2%, 2ysinx — 4,3x2% +2) = V(z,v, 2),
so the vector field is a gradient field, and its integrals are

O(z,y,2) = x2° + y?sine — 4y + 22 + k, keR.
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Calculus 2c-9 Gradient fields and integrals

5) Since e.g.
oV, oV:
8—y1 =12%2% og a—; = 122222,
we have
o v,
Oy ox’

and the necessary condition for an integral is not satisfied. This proves that the vector field is
not a gradient field.

ALTERNATIVELY we get by integrating along the usual broken line from (0,0, 0),

xT y z
B(z,y,2) = / 0dt + / 0dt — 322y / it = 327,
0 0 0

The gradient of this result is
voe = (—6xy2z, —622yz, 73x2y2) #V(z,y, z).

It follows that the vector field is not a gradient field.

6) By a small manipulation,
V.dx = (4oy—32%2% + 1)de + (222 + 2)dy + (—22%2 — 32%)d=
= (4wydr + 22%dy) — (32222 do + 2232 dz2)d(x + 2y — 2°)
= 2yd(e?) +aPdy} — {2d(@%) +3d()} +d(w + 2y — 27)
= d(xz+2y— 2>+ 22%y — 232?),
so the vector field is a gradient field with the integrals
O(z,y,2) =x + 2y — 25 + 202y — 2322 + k, keR.

ALTERNATIVELY we integrate along the usual broken line I from (0,0, 0),

D(x,y,2) = /z dt + /y(2x2 + 2)dt — /2(2:8325 + 3t%)dt
= xo—i— 222y —i 2y — 2322 — 25 i
The gradient of this result is
VP = (1+ 4wy — 32222, 202 + 2, —22°2 — 32%) = V(x,v, 2),
so the vector field V is a gradient field with the integrals
O(z,y,2) = o+ 2y — 25 + 202y — 232 + k, keR.
7) Tt follows from

ov;

Vs )
3y Ty # o 7y — 3y,

that the necessary condition is not fulfilled, so the vector field is not a gradient field.
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Calculus 2c-9 Gradient fields and integrals

ALTERNATIVELY we integrate along the broken line K,

T Yy z
O(x,y,2) = / (2t2+0)dt+/ (3x3t—3xt)dt+/ (—4y?t? —223t)dt
0 0 0
_ 23,3 39 3 o5 453 3.2
= 3x+2$y 233y 3yz To27.
The gradient of this expression is
ve = <2x2+g;v2y2—gy2—3x2z2,3x3y—3xy— %yz3,—4y2z2—2x32>
# V(z,y,2).

We see that the necessary condition is not satisfies, so V is not a gradient field.
8) By a small manipulation,
V.dx = vy cosh(xy)dx+ (z + x cosh(zy))dy + ydz
= cosh(zy){ydx + xdy} + {zdy + ydz}
= cosh(zy) d(zy) + d(yz)
= d{sinh(zy) + yz},
which shows that V is a gradient field with the integrals given by
O(z,y,2) = sinh(zy) + yz + k, ke R.

ALTERNATIVELY we integrate along the usual broken line IC,

O(z,y,2) = /Ow 0dt + /Oy x cosh(zt)dt + /OZ ydt = sinh(zy) + yz.
The gradient of this expression is
v® = (y cosh(z,y),z + x cosh(zy),y) = V(x,y, 2).
This shows that V is a gradient field and that all the integrals are given by
®(x,y, z) = sinh(x,y) + yz + k, keR.
9) It follows from

Wi,
ox

dy

that the necessary condition is not fulfilled, so V is not a gradient field.

ALTERNATIVELY an integration along K gives

T Yy z
O(x,y,2) = / eodt—i-/ ezdt—k/ (x+y+t)dt
0 0 0
T 1 2
= z+4ye —|—(x+y)z+§z.
The gradient of this expression is
vo=(14ye"+z,e"+z,0+y+2) # V(x,y, 2).

As the necessary condition is not fulfilled, V is not a gradient field.
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10) We get by a small manipulation,

1
V-d = dx d 2zd
x 1+ 2292 + 2xyz? + 24 (yde+zdy +22dz)
1
= d 2
14 (zy)2 +2 -2y - 22 + (22)? (zy +27)

1

= ——————d(zy + 2*) = dArctan(zy + 2°).

L+ (zy + 2%)?
This shows that V is a gradient field with the integrals

®(x,y,2) = Arctan(zy + 2%) + k, ke R.

www.job.oticon.dk
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Calculus 2c-9 Gradient fields and integrals

ALTERNATIVELY the integration along K gives

. voog : 21
®(z,y,2) = [ Odt Lt dt
(@y,2) /O +/0 1+ 2%t +/0 1+ a2y2 + 2ayt? + ¢4

# 1
= Arctan(xy) + /t:() Ty 1002 d(t?)
= Arctan(zy) + [Arctan(zy + ¢*)] ;0
= Arctan(zy) + Arctan(zy + 2%) — Arctan(zy)
= Arctan(zy + 2?).

It follows from

1 1
e ———r 2 =
1+ (zy + 22)? ., 22) 1+ 22y? + 20y22 4 24

vo (y,2,22) = V(z,y,2),

that V is a gradient field with the integrals given by

®(z,y,2) = Arctan(zy + 2%) + k, keR.

Example 1.2 Consider the vector field

20 +y 2y T+ 2y

P2raoy+r Y Pty + $€Iy> ;o (z,y) #(0,0).

V(z,y) = (
Prove that V is a gradient field in the set given by y > —|x| and find all its integrals
Then prove that 'V is a gradient field in its full domain.
Finally find the tangential line integral of V along the broken line from (2,0) via the points (2,2) and
(—2,2) to (—2,0).

A Gradient field.

D Either guess an integral, or integrate along a broken line from (0,2). Check the result. Finally, use
this integral to find the tangential line integral of V along this broken line.

I For (x,y) # (0,0) it follows by a small manipulation,

2 +y T+ 2y
Vidx = [——17 ©y ) g S Nl A ©y ) g
. <w2+wy+y2+ye ) x+(x2+xy+y2+m ) g

1

ey (0 et (a4 2y)dy) + e {yda + o dy)

1 x
= Eiar d(z* + zy®) + e"Vd(zy)

d(e™ +1n (2° + zy?)) .

Hence, V is a gradient field in its full domain, and its integrals are given by
®(z,y) =™ +In (2 + 2y + y*) + k, ke R.

ALTERNATIVELY we get by integrating along the broken line

(0,2) — (2,2) — (z,y),

Download free books at BookBooN.com
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Calculus 2c-9 Gradient fields and integrals

Figure 1: The path of integration in the domain given by y > —|z|.

assuming that (z,y) does not lie on the negative Y-axis (actually a larger domain than the given).
v 2t +2 ot /y 2t +x .
o = —_— 1+ 2 dt —_ dt
() /0 {t2+2t+4 e } i o |22+ at+¢2 e
= [In(t* + 2t + 95 + []§ + [In(2? + 2t +)]§ + [e™]§
= In(2®+22+ 4) —Ind+e* —1+In(z? +oy+ y?) —In(2? +204+4) +-e™ —e*®

=e™ +In(z? + 2y +y?) —1—2In2.

It follows from

20 +y T+ 2y
1 b =(-—"77 vy _ <V 2Y
1) v (x2+9cy+y2+ye T 4y + y?

that V is a gradient field. Now, the expression of ® is defined for (z,y) # (0,0), and (1) holds in
this domain, thus we conclude that V is a gradient field for (z,y) # (0, 0).

+x ezy> =V(z,y),

The integrals are then given by
O(z,y) = ™ + In(z? + 2y + y°) + k, keR.

Let IC be the broken line
(2a0) I (2a2) — (_272) — (_270)

V.dx = ®(-2,0) — &(2,0) = e *% +In(4 +0) — 2*° —In(4 4+ 0) = 0.

ALTERNATIVELY and more difficult a parametric description of K is given by
(2,2t), t €10,1],
I'(t) = (6_4ta2)7 te [172}7
(2,6 —2t), te]2,3],

Download free books at BookBooN.com
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SO
V.d /1 2+ dt +2eM b odt
- ax S ———— e
. o L4+ 4t 4 42

2(6 — 4t) + 2

+/12{(6—4t)2+2(6—4t)+4

3 —242(6 — 2t)
+/2 {4—2(6—2t)+(6—2t

1

= [In(4+ 4t +42)]) + [¢],

+ 2e2<6—4t>} (—4)dt

- 26_2(6_2t)} (—2)dt

+[In((6 — 4t)% + 2(6 — 4t) + 4)]? + [62(674@} .

+ [In(4 —2(6 — 20) + (6 — 20)%)]5 + [67%67%)}

In(12) —In4 +e* — 1

+In(4—4+4) —In(4+4+4)+e et

+In4—In(4—4+4)+1—e*
= {1n12—ln4—|—e4—1}—|—{1n4—1n12—|—ei4—674}+{ln4—ln4—|—1—674}

0.

3

2

REMARK. The computations would have been easier if we instead had considered the parametric

description

(2,1), t €10,2],
I'(t) = (_t7 2)7 te [_27 Q]a <>
(—2,2—1), telo,2].

14
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Example 1.3 Prove that the vector field

202% —y 2y’ +x
224+y2 " 2242

V(a2 = 2 me 7)), (@) # (0.0),
is a gradient field in the set A = {(x,y,2) | * > 0}, and find the integral F : A — R, for which
F(1,0,0) = 0. Then compute the tangential line integral of V along the curve IC given by

(z,y,2) = <1,t2, %) . telo1].

Finally, show that V is not a gradient field in its full domain. (Compute the circulation along some
circle in a plane perpendicular to the Z-axis).
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Calculus 2c-9 Gradient fields and integrals

A Gradient field.
D The integral is found by one of the following three methods:

First method. Rules of calculations for differentials.
Second method. Indefinite integration.

Third method. Integration along a curve (e.g. a broken line) followed by the mandatory check.
The tangential line integral is found by:

First method. Use the definition of the integral.

Second method. Insert the parametric description and just compute-

Finally, compute the circulation along the unit circle. If the value is different from 0, the vector
field V cannot be a gradient field in the whole of its domain.

REMARK. The latter result illustrates the importance of the domain being simply connected. ¢

I The integral.

First method. Rules of calculations for differentials. If > 0, then

202 —y 292" +x 2, 2
V.dx = 21 da:+—x2+y2 dy + 2z In(z* + y*)dz
2
= z 2, .2 2 1
- {$2+y2(2xdx+2ydy)+ln(x +y7)d(z )}+x2+y2(—ydm+xdy)
d 2+ 2 1 —ydr +xd
— {22 (3; y2)—|—ln(9:2+y2)d(z2)}—|— S Yy 502 xray
o WO
_|_
x

1
= {Z%dln(z® +y*) +In(z® +y*)d(*)} + ———d (ﬂ)
Y T
1+ (4)
x
= d {z2 In(x? + y?) + Arctan (%)} .
This shows that
V. dx =dF = F - dx,
hence V is a gradient field with the integrals given by

Fi(z,y,2) = 2% In(2? + y?) + Arctan (g> + k, keR, (z,y,2)c€ A
x

It follows from the condition F'(1,0,0) =0+ 0+ k = 0 that k = 0, thus

F(z,y,2) = Fo(x,y,2) = 22 In(z* + y*) + Arctan (g) , x> 0.
x

Second method. Successive indefinite integration. Let again x > 0 and put

w = V.dx
2122 —y 2yz? + 5 o
= i dzr + ey dy + 2z In(x® + y*)d=.

Download free books at BookBooN.com
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Calculus 2c-9 Gradient fields and integrals

An inspection shows that the latter term will give less trouble by indefinite integration, so we
put

Fi(z,y,2) = /2z In(z? + y?)dz = 2% In(2® 4 3°).

Then
2122 2y2> 9 9
dF, = o dx + PR dy + 2z In(z” + y*)dz,
and
—y T
(2) w—dF, = PR dx + 21 dy.

We shall be more careful in the next step. If we choose the first term, we shall usually get an
Arctan-function with y in the denominator. However, y may be 0, so we get some difficulties
in finding a continuous integral. There is here a trick to circumvent this hurdle which is not
too well-known, so we shall show it here aside.

ASIDE. Since z > 0 we may put

—Y 1 ]
AT ey
x
1
= /—2d (Q) = Arctan (g) .
eyt
x
One may, however doubt, if most readers would introduce the new variable ¢t = L4 for y constant.
x

O

INDEFINITE INTEGRATION OF THE LATTER TERM OF (2). When © > 0 is considered as a
constant, we get

FQ(m’y):/%—i-dey:/ﬁd(%) = Arctan(%).

Then
1 Y 1 1 Y x
dF2=42(__2)dx+72'—dy:_2 3 dr+ 5 s dy=w—dh,
1+(g) T 1+<g> T vty T4ty
x T

hence by a rearrangement,
w=V . .dx =dF, +dFy =d(Fy1 + Fy) =d {22 In(z? + 4?) + Arctan (y)}
x

for z > 0.
We conclude that V is a gradient field in A with its integrals given by

F(x,y,2) = 2% In(2® + y*) + Arctan (%) +k

Download free books at BookBooN.com
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Calculus 2c-9 Gradient fields and integrals

for k € R and (z,y, ) € A.

It follows from F(1,0,0) =0+ 0+ k = 0 that k£ = 0, thus the searched integral is

F(z,y,2) = 22 In(z? + y?) + Arctan (g) , (z,y,2) € A.
x

Third method. It follows by a tangential line integral along the curve given by the line segments
(17 07 O) B (.’I}, 07 O) I (.’17, Y, 0) - (x’ Y, Z)

that the curve lies entirely in A, and that the result (the candidate) automatically fulfils
F(1,0,0). Hence

T Yy z
F(z,y,z) = /1 Odt—i—/o JCQL—&-tht—’_/O 2t In(z? 4 y?)dt
= 22In(2? +y?) + Arctan (g)
x

C When this method is used, one shall always check the result:

vF = 1 (y) 2% 2x 1 1 222y

2\ 2 2,20 2 2
1+<g) T ety 1+<y) T ety
T

Y 2722 T 2y2? 9 9
= |- 2z1
< x2+y2+x2+y2’x2+y2+x2+y2’ zn(x +y)

222 —y 2+
x2+y2 ’ $2+y2 )

2z In(x? + y2)> =V(z,y,2).
We see that the result is correct, so V is a gradient field in A, and the searched integral is

F(z,y,2) = 22 In(z?® + y*) + Arctan (Q) .
x

I Line integral.

First method. The curve K, given by

(2,y,2) = (1+t2,%>, t 0,1,

1
lies entirely in A with initial point (1,0,0) and the end point <1, 1, E), and

F(r,y,z) = 22 1H(£E2 + y2) + Arctan (Q)
x

is a integral of V in A. Hence

/’CV~dx = F(l,l,\%)—F(l,0,0):F(l,l,%)

1 T 1
= A 1+-Inl+1)=—4+—=1In2.
rctan —|—2n(—|—) 4—|—2n
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Second method. We get by computing

Lf2.1.2 42 2.42.2 41 t
V.d 2 0 2 1ot 2.—
/,C * /O{ 1+t ST +

S

1 1t
/ {2t +¢ In(1 +tH)}dt =1+ 3 / In(1 + u?)du
0 0

0 2 1+ u?

1 1
= 1+§ln2—1+[Arctanu]é=Z+§1n2-

1 L[t 22 1
1+§[uln(1+u2)]1——/ 2u du:1+§ln
0

In(1+¢*)-

}dt

1,2
1-1
2_/ v -l
o u+1

Sl

CIRCULATION. Let C be the circle in the XY -plane described parametrically by

(2,9, 2) = (cost,sint,0), t € [0, 2n].
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Calculus 2c-9 Gradient fields and integrals

Then the circulation is given by

2 2
/ V.dx = {—sint - (—sint)+cost - cost+0}dt = dt =27
c 0 0

which is different from 0, and V is not a gradient field in its entire domain.

We notice that C traverses points which do not lie in A.

Example 1.4 Given a vector field in the plane,
V(z,y) = («* +y°,2y),  (z,y) €R’

1) Find the tangential line integral of V along the circle % +y* = 1 run through in the positive sense
of the plane.

2) Show that V is not a gradient field.
A Tangential line integral.

D Follow the guidelines.

I 1) Let K be the unit circle given by

(z,y) = (cost,sint), t €0, 2m].
Then
2m 1 2m
/ V.dx = {1-(—sint)+ cost-sint - cost}dt = [cost - = cos3t] =0.
K< 0 3 0
2) Since
oV oVa
1 _9 grz _
oy %Y # o =V

the necessary condition is not satisfied, and the field is not a gradient field.

ALTERNATIVELY we get by integrating along a broken line from (0,0, 0) that

<I>(ar,y,Z)=/V-dX=/ t2dt+/ atdt = - 2® + = xy?,
K 0 0 3 2
where

vo = (m2 + ;2,.%'34) # V(z,y),

which shows that V is not a gradient field.
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Example 1.5 Given the vector field

exp(—(z + 2y + 32)?)
V(z,y,2) = | 2exp(—(z+2y+32)%) |, (z,y,2) € R3.
3exp(—(z + 2y + 32)?)

1) Prove that 'V is a gradient field.

2) Let F be an integral of V. Prove that F' has neither a mazimum nor a minimum.
A Gradient field.

D Prove directly that V - dx = dF. ALTERNATIVELY apply the standard method.

I 1) First method. We get by inspection,
V.dx = exp(—(z+2y+32)?) (dv+2dy+3dz)
= exp(—(z+ 2y +32)}) d(x + 2y + 32)

z+2y+3z
= d (/ exp(—t?) dt + C’) ,
0

thus V is a gradient field. An integral is e.g.

2+2y+3=z
F(z,y,z) = / exp(—t?) dt.
0

This cannot be expressed by the most elementary functions. We have not yet introduced
the error function.

Second method. Since R? is simply connected, and V is of class C>°, we shall only show
that the “mixed derivatives” agree. We get by computing

oV

oy —4(2 4 2y + 32) exp(—(x + 2y + 32)?),
oV,

5 = —6(z 4 2y + 32) exp(—(x + 2y + 32)?),
v, 2
el —4(x + 2y + 3z) exp(—(z + 2y + 32)°),
vy 2
B = —12(z + 2y + 32) exp(—(z + 2y + 32)7),
oV,
on = 0+ 2y +32) exp(—(z + 2y + 32)°).

Hence by comparison,

V. OV, V. V. 9V, oV
oy Oz’ 0z Oz’ 0z 0Oy’

which together with that R? is simply connected shows that V is a gradient field.

2) As F'is of class C°, the (local) maxima and minima can only be attained at stationary points.
Since

vF =V #0 for all (z,y,2) € R?,

it follows that F' has no stationary points and thus no maxima or minima either.
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Example 1.6 Check if the vector field

w2y 232
26 4+ 967 26 + 46

V(z,y) = ;o (zy) #(0,0),
( )

is a gradient field.

A Check of a possible gradient field.

D Integrate along the unit circle and show that the value is # 0.

I We use the following parametric description of the unit circle
(z,y) = (cost,sint), t €[0,2m].

Hence,

27

1

f V.dx = / ——— (—cos®t sin® ¢, cos® t sin®t) - (—sint, cost) dt
I o cosb+sin®t

2m

1

= / m (COS2 t Sin4 t+COS4 t Sin2 t) dt
0 COS S11

27 2 -2
cos“t-sin“t
_ / oSt In s,
o cosSt+sin®t

Since ¢, V- dx # 0 along a closed curve K, the vector field is not a gradient field in R?\ {(0,0)}.

REMARK. The underhand dealing is that it can be proved that V(x,y) is a gradient field in every
simply connected subdomain of R? \ {(0,0)}. We shall show this in the special case where z > 0.
We get by some manipulation using that x > 0,

2,3 3,2 1 3 1 1
w = V.dx=-— :y6d$+ ;Bdey:f—4~y76dx+—3-76y2dy
z° 4y z° +y T 1+(g) T 1+(g)
X xr
1 1 g (1 1, .
= - —— pd(=)+—=d
P (Y {y (x3>+w3 (y)}
x
1 1 K 1 K
= 3')?,}2‘1({9;})3651*1”“&“(@})»

e

proving that the vector field is a gradient field in the right hand half plane x > 0. It is by exploiting
this idea possible to show that the vector field is a gradient field in every simply connected subset
of R?\ {(0,0)}, without being a gradient field in all of R?\ {(0,0)}. ¢
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Example 1.7 Given the vector field
V(z,y) = _ e oy, —
NoErs NoEr
1) Prove that V is a gradient field in Ry x Ry, and find all the integrals of V.
2) Check if V is also a gradient field in the entire domain in which V is defined.

3) Find the tangential line integral of V along the line segment from (0,1) to (1,0).

A Gradient field.

D Sketch the domain. Then use the standard procedure for examples of this kind.

o
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Figure 3: The domain and the curve from (0, 1) to (1,0).

I The vector field is defined and of class C°°, when y > —z2, thus

D={(z,y) |y > —a?}.

1) Let
V. dx Y i e g
w= = — x T+ ——=dy.
VY + a? ! 2v/y + a? ’

Then

T
F s = 7d = 2
(x,y) /2 s TVyte

and

x? x
w—dF =w— y+x2+ — dy =0,
( y + 2 2y + 22

and the integrals in R, x R, are given by

Fo(x,y) =z y+ 22+ C, CeR.

2) Since dFe = w in all of D, we conclude that V is a gradient field in D with the same integrals.
3) The line segment between (0,1) and (1,0) lies clearly in D. It follows from 2) that

(1,0)

/’CV-dx:F(l,O)—F(O,l): {nyJr—xuc] -1

(0,1)
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Example 1.8 Prove that the differential form
w= 2z +ye”)de+ (y+ze)dy, (z,y) €R?,
is exact and find the integral F', for which F(0,0) = 0.

A Exact differential form.
D Use either 1) manipulation, 2) indefinite integration, or 3) integration along a broken line.

I 1) MANIPULATION. When we collect terms which look very similar to each other, we get immedi-
ately,

w e +ye™)de+ (y+ze™) dy = 2ude +ydy) + " (yde + x dy)
1 1
_ d(x2—|—§y2)—&-emyd(l‘y):d(l‘z—‘rigf—%ery),

and the differential form is exact with the integrals

1
F(x,y):x2+§y2+exy+0, CeR.

From F(0,0) = 0 follows that C'= —1, and the searched solution becomes
2 1 2 x
F(z,y) ==« +§y + e —1.
2) INDEFINITE INTEGRATION. We get for fixed y,
Fi(z,y) = /(296 +ye) dr =a® + e

where
w—dFy, = (e+ye")der+(y+ze™)dy— 2e+ye™)de—xze™dy
= ydy,

1
hence Fy(y) = [ydy = 3 y2, and

1 .
F(fc,y):Fl(x,y)Jer(y)+C=x2+§y2+ely+a C eR.

We conclude from F'(0,0) = 0 that C'= —1, so
2 1 2 T
F(z,y) == +§y + e — 1.

3) INTEGRATION ALONG A BROKEN LINE FROM (0,0). Here we get
F(z,y) :/ (2t+0)dt—|—/ (t+ze™) dt:x2+§y2+ezy— 1.
0 0

Notice that if we apply this method we must always check the result:
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C TEST. We get by insertion that F(0,0) = 0. Furthermore, we get the differential
dF = 2z +ye™)de+ (y +xe™) dy = w.

We see that the differential form is exact.

Example 1.9 Given the vector field
V(z,y) = (®° —y+2,28%° —x+y), (v,y) R
1. Prove that V is a gradient field, and then find all integrals of V.

Let Ky denote the circle 2 + y?> = 1 run through once in the positive sense of the plane, and let Ko
denote the oriented line segment from (0,0) to (1,1).

2. Find the tangential line integrals flCl V -dx and fl@ V - dx.

A Gradient field.

D Find for the practice of the methods the integrals in as many ways as possible. In the latter
question we only use the integration theorem, in which only the initial point and the end point of
the curve enter.

I 1) First variant. By some simple manipulations using the rules of calculations of a differential we
get
w = V.dx= (2%’ —y+z)de + (2235 — z +y)dy

1 1 1
{§ yod (%) + 3 3 d (yG)} — (yde+xdy) + 5 d(z® +y?)

Lo, o L sl J1, 2,1 35
d{Q(x—i—y) my+3xy =d 2(3: y)+3xy }

This shows that V is a gradient field, and the integrals are given by

1 1
F(;v,y):—(x—y)Q—i——x?’yG—i—a CeR.

2 3
Second variant. We get by an integration along a broken line from (0, 0)
r v 1 1 1
F(z,y) = / tdt—i—/ (2x3t5—aﬁ+t) dt = §x2+§x3y6 —xy + §y2
0 0

1 1
= 5 (x —y)* + gsc?’yﬁ.
C We shall always check the result by this method. However,

dF = (22y5 + z —y) do + (22%° —z +y) dy = V - dx,

and it follows that V is a gradient field for which the integrals are given by

1 1
F(w,y)=§$3y6+§(x—y)2+0, C eR.
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Third variant. Indefinite integration. Let y be arbitrary. Then
Fi(z,y) = / (®y —y+a) de= %x3y6 —xy + %m2,
hence
dFy, = (x2y6 —y+ x) dx + (2x3y5 — x) dy,

and thus

1
w—dFlzydy:d<§y2>.

It follows that

1 1 1 1
=dF = F Z.2) — 3,6 L2, 12
w=d d<1+2y> d{gwy xy+2x +2y ;

and V is a gradient field with the integrals

1 1
F(x,y):§x3y6+§(x—y)2+0, CeR.

o
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Calculus 2c-9 Gradient fields and integrals

2) Since V is a gradient field and Ky is a closed curve, we get
V.-dx =0.
K1
The latter line integral depends also only on the initial and the end point of the curve, so

V.dx = F(1,1) = F(0,0) = ~.
KCa 3

Example 1.10 Let a denote a positive constant. Given the vector field

14+ 222 2+ ax?y?
Vie) = (FEEE, 2

), (z,y) € Ry x Ry

1) Prove that V is a gradient field, if and only if a = 3.
2) Find for a =3 all integrals of V.

A Gradient field, integral.

D Check w =V - dx.

I 1) Asx>0andy >0, it follows by reduction,

1+

2,2 2 2,2
V. dx = Vo gy + 25070 g
X

3y

1 21
w —dx—&———dy—l—nydx—l—gxzydy
T 3y

3

2 1 a
dlnz + gdlny—&— 3 {yzd (xQ) + z2d (yz)} + (§ — 1) =2y dy

2 1 1
d{lnx+ 3 Iny + §x2y2} + 3 (a — 3) 2%y dy.

Clearly, this differential form is exact if and only if a = 3.
2) When a = 3, it follows directly from the above that the integrals are given by
2 1 55
F(x,y) zlnx—|—§ lny—|—§x y°+C,
where C' € R and (z,y) € Ry x Ry.

Example 1.11 Sketch the domain of the vector field

Yy x
A% = 1 .
o = (1 + )
Then prove that 'V is a gradient field and find all integrals of V.

A Gradient field.
D Sketch the domain; check w =V - dx.
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Figure 4: The domain D is the open region lying between the two branches of the hyperbola.

I The vector field is defined if and only if xy < 1, so D is the open region between the two branches
of the hyperbola on the figure.

Then we get by a small rearrangement,

Yy €T
. T Ty x+< +\/1—wy> Y
1 1
= dy+ —(yd dy) = dy + ———d

= dy+d(—2y/1—2ay) =d{y —2v/1 —zy}.

Since we can put everything under the d-sign, V is a gradient field and all integrals in D are given
by

F(z,y)=y—2/1—zy+C, C eR.

Example 1.12 Given the gradient field

—y z+1
V(z,y) = : : > 0.
(z.9) ((w+1)2+y2 <x+1)2+y2> Y

Find all the integrals of V.

A Gradient field, integral.
D Check w =V -dx.
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I Assuming that y > 0 we get by a small manipulation,

1

1

= —m {éd(x+l)+(x+1)d(§)}

Y
1 1 1
Tt ) = d Arccot (_x—l— ) .

1 2d< y y
1+(m+)

Y

&
|

Hence, the integrals are

1
F(z,y) = Arccot (%) + C, C eR, y > 0.

Example 1.13 Given the vector field

2 2

2xy 2yx
x4 + y4’ x4 + y4

Vi) - ( ). @oer (oo

1. Prove that
y?
F(z,y) = Arctan (F)

s an integral of V in each of the sets

Ay ={(z,y) €ER* |2 >0} and Ay ={(z,y) € R*|z <0}
2. Find all the integrals of V in each of the sets
Bi={(z,y) eR* |y >0} and By ={(z,y) e R* |y <0}.

Let ICq be the line segment from (—1,1) to (1,1), and let Ko be the line segment from (1,1) to (—1,1).

3. Compute the tangential line integrals

V-tds and V - tds.
}Cl K:Z

Let K be the boundary curve of the square of vertices (1,—-1), (1,1), (=1,1) and (=1, —1), where K is
oriented in the positive sense of the plane.

4. Find the tangential line integral

/V~tds.
K
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A Tangential line integrals. The vector field has an integral in each simply connected domain which
does not contain (0,0). In general one shall take care.

D Follow the guidelines.
I 1) We shall only prove that \7F =V in A; and in As. This follows from

2

—2 y_?, 2 % 2xy> 2y x>
VF: (24 ) $y4 = (x4+y47x4+y4> :V(Iay)
1+ s 1+ ey
2
2) Clearly, Arctan(y—2> cannot be applied, but if we guess “of symmetric reasons” on
x

22
Fi(x,y) = — Arctan (y_2> ,
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then we get in By, or in Bs, respectively, that

2
x x
2= 2T ) )
12 Y3 2xy 2yx
F = - y = - ) = V 9 9
\Y ! ! ( 7 SRV L S (z,y)
1+ — 1+ —
Y Y

and the integrals of V(z,y) in By, or in By, are

2
Fi(z,y) = — Arctan (%) +C, CeR

0.54

~0.5

Figure 5: The curve composed of Ky from (1,—1) to (1,1), and Ky from (1,1) to (—1,1).

3) The line segment K lies entirely in A;, and the line segment Ko lies entirely in B;. Hence we
can use the integrals found in A; and in By, respectively. Thus

g V-tds= [F(x,y)]gl_)l) = Arctan 1 — Arctan 1 =0,

and

V-tds= [F(x,y)]gi)l) = — Arctan 1 + Arctan 1 =0.
Ko ’

4) Let K3 be the line segment from (—1,1) to (—1,—1). Then K3 lies entirely in Ay, and we get
similarly that

v tds = [F(z,)](_),)" =0.
3

If K4 is the line segment from (—1,—1) to (1, —1), then K4 lies entirely in Bs, so

; V. tds = [H(%Z/)]El_l_l—)l) =0.
4

Finally, it follows from the results of 3) and 4) that

4
V- tds = / V- tds =0.
/’C jgl Kj
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Figure 6: The curve K of 4).

REMARK. It is now no longer difficult to show that V has an integral in the set R?\ {(0,0)}.
This shall only be sketched in the following. The idea is to prove that the tangential line
integral along any closed (piecewise C'1) curve is 0. If the curve lies in one of the four sets Ay,
A, Bi, Bs, this has already been proved. If the closed curve lies in the union of some of these
sets without encircling (0, 0), just add some curve segments, run through once in each direction,
such that each of the closed curves lies in one of the sets Ay, As, By, B>, and the previous
result can be applied. Finally, if the closed curve encircles (0,0), we first add the curve —K,
i.e. the curve of 4) run through in the opposite direction. Then add some curve segments, also
run through once in each direction (contributing with zero to the final line integral) such that
each of the new closed curves lies in one of the four sets, in which we have found an integral.
The sum of all these closed line integrals is 0, and since we only have added 0 to obtain this
result, the original closed line integral must also be 0. And the claim is proved. ¢

Example 1.14 1) Sketch the domain A of

T Y 1
V(z,y) = , +—.
(@) <\/12—3m2—3y2 V12322 —3y2 \/z7>
2) Prove that the vector field V : A — R? is a gradient field and find all its integrals.

A Domain; gradient field.

D Check where the denominators are defined and # 0. Then use one of the standard methods of
investigation of gradient fields.

I 1) The domain is given by
12322 -3y >0 and y >0,
which we rewrite as
2?4 y? <4 =27 and y > 0.

The domain A is the open half disc of centrum (0,0) and radius 2 and y > 0.
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-2 -1 0 1 2

Figure 7: The domain A is an open half disc.

2) First variant. Manipulation. By some small rearrangements,
xdx + ydy dy  1d(12—32*—3y?)

V12-322 312 I 6 \/12—322 3,2
1
~5d (VI2=322=3y2) + 2d(v)
1
= d<2\f 3\/123x23y2) .
We conclude that V is a gradient field and all its integrals are given by

1
F(x,y):2[—5\/12—3x2—3y2+6’, (z,y) € A,

where C' is an arbitrary constant.

V.dx = + 2d(\/y)

Second variant. Indefinite integration. When the second coordinate is integrated we get the

candidate
Fl(w):/( Y +1>dy:2\/§—1\/m.
12— 322 —3y> VU 3
Since
o —6x x

oR 11 _ v
dr 3 2 /12 322 3y2 /12 322 _3y2

it follows that F} is an integral and V is a gradient field.

The integrals are now given by
1
F(w,y):Q\f—g 12 — 322 — 3y2 4+ C, (x,y) € A,

where C' is an arbitrary constant.

Third variant. Integration along a broken line. In order to stay inside the set A we integrate
along the broken line

(0,1) — (0,y) — (x,y).
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In this way we obtain the candidate for (z,y) € A

vy 1 . ¢
Fo(r,y) = / <7——>dt+/ dt
2(7y)  \Viesse Vi o /12— 32 — 3,7

1 1 1
= 2\/§—2—gs/12—3y2+1—g\/12—3x2—3y2+§\/12—3y2

1
= 2yy - g V1232 37 - L
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We shall always check our result in this variant, because the formula will give a result no
matter if the differential form is exact or not. But

% _ ,%% m.(ﬁx) = 12—;;:2—3112 = Va(@,y),
andaF . 11 1
8—312 - 32 12f3x2—3y2’(_6y)
_ J Vy(z,y),

thus

VFa(z,y) =V(z,y).

Hence we have proved that the candidate is indeed an integral. Finally, we conclude that
all integrals are given by

1
F(x,y):Q\/_—g 12 — 322 — 3y2 + C, (z,y) € A,

where C' is an arbitrary constant.
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2 The flux of a vector field

Example 2.1 Find in each of the following cases the flux of the given vector field through the described
oriented surface F.

1) The fluz of V(x,y,2) = (2,2, —3y>2) through the surface F given by x> +y? =16 forx >0,y >0

and z € [0,5], where the normal vector n is pointing away from the Z-axis.

2) The flur of V(z,y, z) = (cosz, 0, cos x+cosy) through the surface F given by (x,y) € [0, 7] x [0, g]
and z =0, and where n = e, .

3) The flux of V(z,y, 2) = (zy, 22,2yz) through the surface F given by x> +y* + 2% = a®, and z > 0,
y >0, z >0, and where n is pointing away from origo.

4) The fluz of V(z,y,2) = (x + y,x — y,y> + 2) through the surface F given by x* + y*> < 1 and
z = ay, and where n-e, > 0.
5) The flux of
1
an R) = T 5 L8 LY, =),
(2,9, 2) EERT IS (z,y,2)
through the surface F given by 0 < a and z = h, and where n = e,.
[Cf. Example 4.3].
6) The fluzx of
1
V(r,y,2) = ——— (2,9, 2),
(2,y,2) (212 1 20) (z,y,2)

through the surface F given by ¢ = a and z € [—h,h|, and where n is pointing away from the
Z-axis.

[Cf. Example 4.3].
7) The fluz of V(z,y,2) = (y,x,x +y+ z) through the surface F given by the parametric description
r(u,v) = (u cosv,u sinv, hv), ue 0,1, wvelo,2n].
8) The flux of V(x,y,z) = (y, —x, 2?) through the surface F given by the parametric description

. 3
r(u,v):(\/ﬂcosv, usmv,v?), 1<u<?2, 0<v<u.

9) The flux of V(x,y,z) = (yz, —xz, hz) through the surface F given by the parametric description
r(u,v) = (u cosv,u sinv, hv), ue 0,1, wvelo,2n].
A Flux of a vector field through a surface.

D Sketch whenever possible the surface. If the surface is only described in words, set up a parametric
description. Compute the normal vector N (possibly the normed normal vector n) and check the
orientation. Finally, find the flux.

I 1) The surface is in semi polar coordinates described by

o=a, @6{0%}, z€10,5],
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Figure 8: The surface F of Example 2.1.1.

and the surface is a cylinder with the parameter domain

},26[0,5]}.
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Figure 9: The surface F of Example 2.1.2.

The unit normal vector is

(cos g, sin @, 0),

n—

and the area element is

dsdz = 46pdz.

ds =

Hence we get the flux

/V~ndS = /{zcos<p+4cos<p~singo}~4dg0dz
F E

z 5
= 4/ {/ (z cosg0+4sinap-cos<p)dz}d<p
0 0

1
2

+4-20-

25
2

@+ 20 singp coscp} dp=14-

(2
4/2{5 cos
0 2

90.

2) In this case the flux is

/V.ndS = /{/2(cosx+cosy)dy}d:z:
F 0 0

cosa:+1}dx:O+1-7r:7r.

s
2

X

3) The surface is a subset of the sphere of centrum (0,0, 0) and radius a, lying in the first octant.

In rectangular coordinates we find the area element on F,

as =
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Figure 10: The surface F of Example 2.1.3 for a = 1.

and the unit normal vector is
1

1
n:—(l’,yvz):—(%Q,VCLQ—JUQ—Z/Q)a (Jf,y)EE,
a a
where the parameter domain is
E:{(a:,y)|0§x§a,0§y§\/a27x2}.
Then the flux of the vector field V(z,vy, 2) = (zy, 22, 2yz) through F is
1
/ V ndS = / (wy, 22, 2y2) - — (2,9, 2) dS
F F a

1 1
= / {2%y + yz* + 29z} dS = - / y(z® + 32%) dS
a Jr a Jr

1

2
z—/a Li’)y\/(ﬂ—xz—y? dx dy
alp [a? — 22 — 42

a Va?Z—x? 22
:/ / —2+3\/a2—$2—y2 ydy ¢ dx
0

0 a2 — a2 —y
2 2
1 a a“—x 2
-5/ 1/ ($—+3W-x2_t>dt ds
2.Jo 0 va? —x? — 2

a?—x?

1 [ 2 3
z—/ {—2:1:2 aQ—xQ—tQ—S-—( a2—x2—t>} dx
2 /s 3

ALTERNATIVELY, the area element on F is given in polar coordinates by

S = a2 sin 6 do dy, 96[0,%], pe {Og]
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Figure 11: The parameter domain of Example 2.1.3 for a = 1.

thus the parameter domain is

p-{nn [0s0sFosoe 5= 3] )

As
(z,y,2) = a(sinf cosp,sin b sin p, cosf),
the unit normal vector is
1
n=—(z,y,2z) = (sinf cosp,sind sin p, cos ).
a
The flux of the vector field
V(z,y,2) = (zy, 2°,2y2)
through the surface F is
1
/ V ndS = / (zy, 2%, 2yz) - = (z,y,2)dS
F F a
1 1
= - / {22y +y2* + 2y2*}1dS = —/ y(z® + 32%) dS
2 F a Jr

1
= 5/ asin@ sin ¢ - a®{sin? @ cos® p+3cos? A} - a®sin dh dyp
E

a /L {/ " sin2 g (sin® @ cos® p+3cos? 0) sin @} de
0 0

s

5 1 1 E
=at / sin? @ | —= sin? 6 cos® o— = cos? 6 cos p db
0 3 3 =0

= a4/2 sin? 6 (; sin29+300s29> de.
0
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We compute the integrand by introducing the double angle,
0 1
/ (3cos® 6 + 3 sin? 0) df

DN | =

(1 —cos26) {g (1+cos26)+ % (1 —00529)}

(1 —cos20){9(1 + cos 20) + (1 — cos 20)}

—
|~

(1 —c0s260)(10 + 8 cos 20) = % (1 —cos20)(5+ 4 cos20)

[\]

D =D ==

(5 — cos 20 — 4 cos? 20) = %{5 —cos20 —2(1 + cos46)}

1
= —(3—cos20 —2cosd) = - — COS29—§COS40.

N |
| =

The flux is obtained by insertion,
H 1
/V-ndS = a4/ sin29<— sin29—|—3c0520>d0
F 0 3

= a4/02 {% - % cos 20 — % cos49} do

= a2 2t 2 [sinze](?—a‘*-l?)&[sinw]?:T.
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Calculus 2¢-9 The flux of a vector field

4) Let E = {(x,y) | 22 + y? < 1} be the unit disc. Then a parametric description of the surface
F is given by

{(z,y,7y) | (z,y) € E},

where the normal vector is
e, e, e,
N(.T,y) = 1 0 Yy = (_y7 —.’,U,l),
0 1 =z
and clearly, N-e, =1 > 0.
Then the flux of the vector field
V(x,y,z) = (IL’+y,Z’ 7yay2 +Z)
through F is given by

/V~ndS = /V~Ndxdy:/(x+y,x—y,y2+my)~(—y,—m,l)dxdy
F E E

= /{—xy—y2—x2+xy+y2+xy}dxdy:/(xy—xQ)dxdy
E E

27 1
= / {/ 0% (cos ¢ - sin g — cos? @)gd@} dy
0 0

1 27
= 1/ (cos @ - sin g — cos? @) dyp
0
1 1 ™
- 0—>-.97.==_"_.
1T T Ty

5) The surface F is a disc parallel to the XY -plane at the height h. We choose
E = {(z,y) | 2* +y* = 0® <a®}.

as the parameter domain. Then the flux through F is

2m a 1
/V~ndS = /%dajdyZh/ {/ —39dg}dg0
g B (22 +y? + h?)2 0 o (e*+h?)2

a
1

1

h
= 92 1— — .
7r< \/a2+h2>

1 1
= 21h -
" (m m)

0=0

6) In this case F is a cylinder surface which is given in semi polar coordinates by the parametric
description

{(G,QP,Z) | wE [0,27T]7 z € [_hvh}}a
and the parameter domain becomes

E={(p,2)| ¢ €[0,27], z € [=h,h]} = [0,27] x [—h, h].
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Figure 12: The surface F of Example 2.1.6 fora =1 og h = 1.

The unit normal vector pointing away from the Z-axis is
n = (cos g, sin g, 0),

and the area element on F is
dS =dsdz =adpdz,

thus the flux through F is
/V-ndD = /%(COSQQD-FSinQQD-‘rO)adQOdZ
F E (a? + 22)2
h 1 h 1
= a2~27r/ —3dz:47m2/ ——dz.
(a2 o (a2 + )

It is natural here to introduce the substitution

z=asinht, dz=acoshtdt, t= Arsinh (E) .
a

Then we get the flux through the surface

Arsinh(2) ht Arsinh(2) dt
/V~ndS 47ra2/ &dt:@r/ =
F 0 0

a cosh® ¢ cosh? ¢
) Arsinh(Z) n
= 4r[tanh t]?rsmh(%) =dr % =4 a =
V1+sinh“t |, 1+ %

4d7th
JET R
REMARK. The field of Example 2.1.5 and Example 2.1.6 is the so-called Coulomb field, cf.
Example 3.3. It is tempting to combine the results of Example 2.1.5 and Example 2.1.6
to find the flux of the Coulomb field through the surface of the whole cylinder. Since n = —e,,
when we consider the surface of Example 2.1.5 at height —h, it follows that

h Ach —h (—h) )
flux =27 (1 — + -2 — = 4.
ux ﬂ—( \/a2+h2) \/a2+h2 7T</h2 Va2 + h2 d 0
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7) Here

e, ey e,
Ccosv sinv 0
—usinv wcosv h

N(u,v) =

so the flux of the vector field (y,z,z + y + 2z) through F is

/V~ndS:/V~N(u,v)dudv
F E

:/ hu(—cost)dudv+/ uz(cosv—l—sinv)dudv—l—h/
E E

1 27
=O—|—O—|—h/ udu/ vdv =h
0 0

= (h sinv, —h cosv,u),

/ (husin? —hu cos® v + u?(cos v + sinv) + huwv)du dv
E

/ (usinv, ucos v, u(cosv+sinv)+hv) - (hsinv, —h cos v, u) du dv
E

uv du dv

8) The normal vector of the surface F of the parametric description

r(u,v) (ﬂcosv, usinv,fs/Q), 1<u<2, 0<v<u,
is
e, ey e,
1 1
Oor Or & 0
N(u,v) = X o= 2\/56081) 2\/asmv 3
wsinv  /u cosv 5\/5

The flux of V(z,y, 2z ) (y, —x,2%) through F is

N(u,v) dudv

S—
<
s
a
N
I

T
<
S
4

f
_/E(
—/{§\/_s1n v+ = \/Bcos v+—v }dudv
3 1 Z(re/3 . 1

= —Vv+-wv }dudv—/ {/ (—Uer—Ug
ARG U (G

2 u 2

L a3 TRY, 1 \2 8

2

12 s 1 4 1 5, 1 o5 1 1
— - . — 2 —_ = — 2 —'2 - - T X
[2 5" +40“L 5 (V2 + 5 5 40
1 V2
= (8-4 32-8-1 32v/2 +23) = =
=1l V2t )= 40( V2+23) 5

(u,v)
\/ﬂsiljw,—\/ﬂcosvv <\/jsmv \/jcosv—>dudv
>dv}du

23
40°

45
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Calculus 2¢-9 The flux of a vector field

9) Here we have [cf. Example 2.1.7]

e, ey e,
N(u,v) =] cosv sinv 0 |=(hsinv,—h cosv,u),
—usinv wcosv h

and the flux of the vector field (yz, —xz, hz) through the surface F becomes
/ V.-ndS = / V - N(u,v) dudv
F E
= / (uhv sin v, —uhv cos v, h?v) - (hsinv, —cos v, u) du dv
E

:h/(uhsinQU—|—uhcos2v+huu)dudv:hz/ u(l 4 v) dudv
E

E
1 27 1 T2 2

= h? udu-/ (v+1)dv:h2~§ [?—&—v} :7-{27r2+27r}:h27r(7r+1).
0 0 0
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Calculus 2c-9 The divergence and rotation of a vector field

3 The divergence and rotation of a vector field
Example 3.1 Find coordinate expressions of the vector fields rot(rot V) and grad (div V).
Then prove the formula
grad(div V) —rot(rot V) = (div(grad V;), div(grad V), div(grad V.)).
A Calculation with nabla.

D The results can be obtained by very mechanical calculations. It is a matter of taste whether one
prefers the notation above or

grad = v/, div = v/, rot =y x.

We shall here use the latter, thereby keeping the formal connection to the geometric relationships
that the operations are describing.

I Let V ne a vector field of class C2. Then
oV, 8V )

N oV IV, o+ vy IV,
dy 0z 9z Oz Oz y

By repeating this pattern we get for the double rotation that

rotV:VXV:<

rot(rot V) = v x (v xV)
B (3 {8V oV, }2{8%6‘%})6
dy | 0 Oy 0z | 0z Oz *
RATAEIE )
0z | Oy Oz Oxr | 0z Oy Y
a oV, JIV, 0 [0V, 09V,
+(8_x{5'z_3z} 5‘y{8y 32})6’

rot(rot V) =7 x (vV)

92V, 82 o 0%V, N 0%V, .
©0y? 022 0xdz Oxdy)

thus

( Vy 82 v 02V, N 0%V, N 82VZ>
0x? 822 oxdy  Oyoz
922 8y82 0x0z) °

— (V*Va, V2 V 'V V)
) {avx oV, avz}

or | oz Ay 0z
+g{avx+%+avz} e
Jy | Ox dy 0z
2 {% + % + GVZ} e
oz | 0z Oy 0z [ °
=-vV'V+v(v V)
—(div(grad V,),div(grad V,)),div(grad V.)) + grad(div V),

+
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Calculus 2c-9 The divergence and rotation of a vector field

and the formula follows by a rearrangement.
REMARK 1. Notice that the formula can also be written
V(V-V)=vx(vxV)=v*V. ¢

REMARK 2. We note for completeness

B ov, 9V, 0V,
v(v-V)= (8x+8—y+3z)

__W%+W%+Wn(%%yw+ya+ywe
-\ 022 Ox0y  0x0z) Oxdy  Oy?  Oydz) Y

(P PV, OV
0xdz  Oydz 022 )

Example 3.2 Find div'V and rot V for each of the following vector fields on R3.

1) V(z,y,2) = (vz, —y*, 22%y).
2) V(,y,2) = (2 +siny, —z + cosy,0).
3) V(z,y,2) = (e™¥, cos(zy), cos(z2?)).
4) V(z,y,z) = (22 + yz,y° + 22,2° + ay).
5) V(z,y,z) = (x + Arctan y, 3z — z,2Y%).
6) V(z,y,z2) = (223, —22%yz, 2y2*).
7) V(z,y,z) = (sinh(zyz2), 2, x).

(

8) V(Arctan z, Arctan x, Arctan y).
A This is just a simple exercise in finding the divergence and the rotation.
D Insert into the formulese

divV=x-V og rotV=xxV.

I 1) We get for V = (22, —y?,22%y),

divV=z-2y+0=2—-2y

and
e, e, e,
0 0 0
tV=| — — — | =222 24 .
ro oz Oy G ( -, x 517%0)

xz  —y? 22y
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2) We get for V = (z + siny, —z + cosy, 0),

divV=0-siny+0= —siny

and
(S €y €,
0 0 0
rot V= E y s =(1,1,—cosy).

z+siny —z4cosy O
3) We get for V = (e*¥, cos(xy), cos(z2?)),

div V = ye®™ — z sin(zy) — 2z2 sin(z2?)

and
e, ey e,
| 0 0 0 B 9 . 5 , oy
rot V= p oy o = (0, 2% sin(zz%), —y sin(zy) — z e”?).

e cos(wy) cos(xz?)
4) We get for V = (22 + yz,9y? + 22, 2% + 27 fas,

divV =2(x+y+2)

and
ex ey eZ
0 0 0
rot V= Ey y E =(x—z,y—y,z—2z)=(0,0,0)=0.
x2+yz y2—|—xz 22—|—xy
5) When

V = (z + Arctan y, 3z — 2,¢¥?) = (z + Arctan y, 3z — z, e *¥?)
we find

divV=140+In2 -y-e™?¥* =14+1n2.y-2Y*

and
(S €y €,
0 0 0 1
t V= — — — =(In2-2z-2Y% 41 — .
ro oz dy 0z (n : +1,0,3 1+y2>

x4+ Arctany 3z —z e2v2
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6) If V = (223, —22%yz,2yz?), then
div V = 2% — 2222 + 8y2*
and
e, ey e,

rot V = % 3%/ % = (22* + 22%y, 3222, —4ay2).

zz® —22%yz 2z
7) If V = (sinh(zyz), 2, x), then

div V = yz cosh(zyz)

and
e e, e,
rot V= % 8%/ % = (—1,xy cosh(zyz) — 1, —xz cos(zyz)).

sinh(zyz) =z «

LAN/ sPaR

Hcalendar

=
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Calculus 2c-9 The divergence and rotation of a vector field

8) If V = (Arctan z, Arctan x, Arctan y) then

divV=0
and
ex ey eZ
0 0 0 1 1 1
tv=| = = 2 = .
ro oz dy 0z (1+y271+z2’1+:z:2>

Arctan z Arctan x Arctan y

Example 3.3 Find the divergence and the rotation of the vector field (the so-called Coulomb vector
field),

1
Vizy,2)= 5 (@y2), (29,2 #0000, r=va?+y>+22
[Cf. Example 4.3]
A Divergence and rotation.

D Compute div V=57V and rot V = x V.

I First notice that

o w0y, Oz
or r’ oy & 92

These are easy rules of calculations, by which
. 0 [x 0 [y 0 [z
avv o= 5o (5)+ g, (5) + 5 ()
_ (139N (1 syor\ (1 30
o\t ox ot Oy ot 0z
3 3 3

1 2 2 2 3
= ma Tyt =g =0
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and
exr e, e,
9 9 9
rot V. = ox Oy Oz
Tz oy

|
—N

N
S
N
‘Bw| —

)-8 (2o 22+ (2]}
IR 1)

or Or Or or Or or

= (Za—y— aﬁ&‘za—x’ya—x‘xa—y)

3
- 2 (Z.Q_y.f’x.E_Z.iy.f_xﬂ) — (0,0,0).
T T r T T T

e, e, e,
ex ey eZ
9 9 9
rot V. = Or Oy 0z |~ g 1 E 1 ﬂ 1
Oz \ r3 oy \ r3 0z \r3
X z x Yy z
e, e, e,
31 0r Or Or 3% © €= 3
= % 8_3/ 5 | =~ r Yy :—T—5x><x70 O
y oz

Example 3.4 Choose the constants « and (3, such that the vector field
V(x7 y’ Z) = (xyz)ﬁ (ma7ya7za) ) ($7y7 Z) 6 Ri?
has zero rotation.

A Rotation free vector field.

D Compute rot V.
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I We get by a calculation,

ez ey ez
0 0 0
rot V. = % a—y &

mO‘JFBszﬁ x,@ya+ﬁ xﬁyﬁza%@

= I@(xﬁyﬁ—lza-‘rﬁ_ Bya+5 B-1 )e _~_5( a+p ﬁ SB=1 ﬁ—lyﬁza-i-ﬁ)e

+6( B—-1 a+ﬁ prca. a+ﬁyﬁflzﬁ)e

-1 _«a a, ,—1 -1 a ,.—1, « a, —1

= ﬂ(xyz)ﬁ(y 2% — Pl e Tl Ty — 2y )

If 8 = 0, then the factor outside the vector is 0, and the vector field becomes rotation free in Ri.
This corresponds to the vector field

V(z,y,2) = (x%y%,2%), a€R,
where the condition (z,y,z) € R assures that the vector is always defined.

The second possibility is that the vector is

(yflza o yazflyl,azfl o xflzoz’xfly ayfl) —0.
This gives the condition o« = —1, in which case the vector field becomes
B=1y)8,8 48, B=1,8 48,8 ,0-1 (Ll L1
V(z,y,2) = (a""1y2" 2Py ey 2P = (wy2) 25 %

which is also free of rotation.
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4 Gauf3’s theorem

Example 4.1 Find in each of the following cases the flur of the given wvector field V through the
surface of the given set ) in the space.

1) The vector field V(z,y, z) = (5xz,y? — 2yz,2yz), defined in the domain Q by x> + y? < a? y > 0,
0<z<hb.

2) The vector field V(z,y, z) = (2 — V1 + 22, 2%y, —x2?), defined in the cube Q = [0,1]x[0,1]x [0, 1].

3) The vector field V(x,y, 2) = (x2+y?,y*>+22, 22+2?) given in the domain Q defined by x> +y%+2% <
a?® and z > 0.

4) The vector field V(z,y,z) = (23: + /Y2 + 22,y — cosh(xz),y? + 22), defined in the domain

5) The vector field V(z,y,z) = (—x+cos z, —xy, 3z+¢e¥), defined in the domain ) given by x € [0, 3],
y €10,2], z € [0,y?]

6) The vector field <y T, where T(x,y, z) = 2 +y?+ 22 is defined in the domain Q given by x> +y? < 2
and z € [0,2].

7) The vector field V(x,y,z) = (23 + xy?, 4y2? — 22%y, —2%), defined in the ball given by

:z:2+y2+z2§a2.

2 2
8) The wvector field V(x,y,z) = (2x,3y, —z), defined in the ellipsoid ), given by (g) + (g> +
2
(=
c
A Flux out of a body in space.
D Apply Gaufi’s theorem of divergence.

I According to Gauf}’s theorem the flux is given by

V. -ndS = div V df2.
o9 Q

1) Since
div V =52 4+ 2y — 2z + 2y = 3z + 4y,

the flux is

b ™ a
/ div VdQ = /Szdz —Ta +4// {/ gsin<p~gdg}d<pdz=Zﬂ'asz—Fgagb.
0o Jo 0

2) Since
divV =2+2% - 22z,

the flux is

/ dideQ:2+/x2dQ—/2xde—2
Q Q Q

OJI'—‘
l\JlH
(=
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3) Here
div V =22 + 2y + 2z.

It follows by the symmetry that

/deQ:/deon.
Q Q

We obtain the flux by an application of Gauf}’s theorem, the argument of symmetry above and
semi polar coordinate,

div VdQ) = /2de+/2de+/22dQ=/2de
Q Q Q Q Q

_ AzW{AG{AMZZdZ}QdQ}d4p

a 2 a
= 2ﬂ/(a2—92)9d9=2ﬂa—92—9—} —or. L 20
0 0

Iy
IS

4
2 4 42
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4) Since
divV=2+1+2=5,
the flux is
/Q div VdQ = 5vol(K((3,-1,2);3)) =5 - 4% -3% = 180m.
5) Since
divV=-1-2+3=2-2,

the flux is given by

[ vao - A(g_x>dgz/03<2_x){/02{/jdz}dy}dx
VR GRS A

divV=A@?+y*+22)=2+2+2=6,

6) Since

the flux is given by
/ div VdQ = 6vol(Q) =6 -7 - (v/2)? - 2 = 24
Q
7) Here,

div V =322 4y + 427 — 22 — 32270 + ¢ + 22,

The the flux is easiest computed in spherical coordinates,

27 T a 571 4
/ div VdQ:/ {/ {/ r? -rsin@dr} d@}d@:QW [T—} [—cosb]f = - ma°.
Q 0 0 0 5 1o 5

8) From
divV=243-1=4,

follows that the flux is

4 16
/ div VdQ = 4vol(Q) = 4 - —~ abe = — 7 abe.
Q 3 3

Download free books at BookBooN.com

56



Calculus 2c-9 Gaup's theorem

Figure 13: The meridian cut of i Example 4.2.2.

Example 4.2 Find in each of the following cases the flur of the given wvector field V through the
surface of the described body of revolution €.

1) The vector field is V(z,y,z) = (y? + 2%, (x — a)? + 2%, 22 + y?), and the meridian cat of Q) is given
by 0o <a and 0 < z < {/a? — o%.
2) The vector field is
V(z,y,2) = (2% — 2zy, 2y + 62222, 22 — 202 — 2y2),

and the meridian cut of Q is given by 0 < z <1 and o < e *.

3) The vector field is V(x,y,2))(x? —xz,y? —yz, 22), and the meridian cut of Q is given by 0 < VIn z
and z € [e,€?].

4) The vector field is V(z,y,2z) = 2z + 2y,2y + z, 2z + 2x), and the meridian cut of Q is given by

2
—Q
0<a, ¢ <z<Wa?—o.

a

A Flux from the surface of a body of revolution.
D Sketch if possible the meridian cut. Compute div V and apply Gauf)’s theorem.
I 1) From div V = 0, follows trivially that the flux is

/ div 'V dQ = 0,
Q

and we do not have to think about the body of revolution at all.
2) We conclude from
divV=2x—2y+4y+2—2x—2y =2,

that the flux is

1
/dideQ:2vol(Q):2/ Te Pdz=m(l—e?).
Q 0
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Figure 14: The meridian cut of Example 4.2.3.

Figure 15: The meridian cut of Example 4.2.4.

3) Here,
divV =2x— 242y — 2+ 22z =2x+2y.
If we put
B(z) = {(z,y) | 2* + y* < Inz}, z € [e, €?],

then the flux is

2

/ dideQ:/(Qw—i—Zy)dQ:/ {/ (2m+2y)dmdy}dz:0,
Q Q e B(z)

because it follows from the symmetry that

/ xdxdy:/ ydxdy = 0.
B(z) B(z)

4) Tt follows from the equations of the meridian cut that when z > 0 we have the quarter of
a circle, and when z < 0 we get an arc of a parabola. It is natural to split the cut of

correspondingly in Q5 (for z > 0) and Qs (for z < 0).
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Since
divV=24+2+1=5,
we get by Gauf’s theorem that the flux is

flux = / V. -ndS = / div V dQ = 5vol(2) = 5vol(£21) + 5 vol(£2s)
o9 Q

0 0
= .%.%a?’—hﬁ/ 7rg(z)2dz:1077ra3+577/ (az + a*) dz
R L az? 9 0 _10m 4 a? 3
= 3 a—|—5ﬂ'{2 —&—az}a— 3 a’ + 57 2+a
2 1 7 35

_ N T 3.0 _ 99 3
= o7a <3—|—2> 5Ta 6 67ra.
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Example 4.3 Let Q denote the cylinder given by z € [—h,h], 0 € [0,a], ¢ € [0,27]. Find the fluz
through the surface 02 of the Coulomb vector field

1
V(z,y,2) = T—B(x,y,z), (x,y,2) # (0,0,0), r=+ax?+y>+ 22
[Cf. Example 2.1.5, Example 2.1.6 and Example 3.3].

A Flux through the surface of a body.

D Think of how to treat the singularity at (0,0,0) before we can apply Gauf’s theorem. Find the
flux.

I When (z,y, z) # (0,0,0), we get [cf. Example 3.3|
ovi 1 3 , v, 1 3 , oV 1 3,

- a T a2 T = ) T 2T EF R,

Ox 13 77 9y 3 Y 0z r3
hence

. 3 3 3

leV:T—S—T—5($2+y2+22)zr—3—r—57’2:0.

One could therefore be misled to “conclude” that the flux is 0, “because (0,0, 0) is a null set”; but
this is not true.

Let R €]0,min{a, h}[. An application of GauB’s theorem shows that the flux through the surface
of Q\ K(0; R) is

/ div VdQ =0,
O\ K (0;R)

because (0,0,0) ¢ Q\ K(0; R). Hence, the flux is

V .-ndS = / V -ndS — V- -ndS —|—/ V -ndS
o0 o0 9K (0;R) K (O0;R)

= / dideQ+/ V - ndS = V -ndS.
Q\K (0;R) 0K (0;R) 0K (O;R)

On the boundary 9K (0; R) the outer unit normal vector is given in rectangular coordinates by

1
n=_ (z,y, z), thus

1 1 1
V.n= ﬁ(xvyvz)'_(:myaz): ﬁ

R
The area element is given in polar coordinates by
dS = R?*sin 6 df de.

Then the flux through 90X is given by

2m ™
1
V~ndS:/ V~ndS:/ {/ —~stin9d0}d<p27r[c039]g47r,
. R?
aQ K (0;R) 0 0
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Figure 16: The surface of Example 4.4 for a = 1.

Example 4.4 We shall find the flux ® of the vector field

V(z,y,2) =

(€Y + cosh z, e” + sinh z, 2%2%), (z,y,2) € R3,

through the oriented half sphere F given by

gg2+y2+z2—2az:o, z<a, mn-e;>0.

It turns up that the integration over F is rather difficult, while on the other hand the expression of div
V s fairly simple. One shall therefore try to arrange the calculations such that it becomes possible to

apply Gauf$’s theorem.

1) Construct a closed surface by adding an oriented dist Fy to F. Sketch the meridian half plane.

2) Find the fluz ®1 of the vector field V through Fi.

3) Apply Gaufs’s theorem on the body Q0 of the boundary 02 = F U Fy, and then find ®.

A Computation of the flux of a vector field through a surface where a direct calculation becomes very

difficult.

D Apply the guidelines, i.e. add a surface Fi, such that F U F; surrounds a body, on which Gauf}’s
theorem can be applied. Hence, something is added and then subtracted again, and then one uses

Gauf}’s theorem.

1) When we add a® to both sides of the equation of the half sphere, we obtain

2

a? =2 P + 2% - 20z +a® = 0* + (2 — a)*.

It follows from the condition n - e, > 0 that the curve in the meridian half plane of F is the
quarter of a circle of centrum (0, a) and radius a,

92+(z—a)2

2

=a”, z<a, 0>0.

Note that the normal vector has an upwards pointing component.

The disc (“the 1lid”), which shall be added is of course the dist in the plane z = a of centrum
(0,0, a) and radius a.
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Figure 17: The meridian curve of Example 4.4 for a = 1.

2) The flux of V through F; of normal e, is

27 a 47a
V- -ndS = x2a2dS:a2/ 0052@{/ 92~gd9}d30:a27r- [Q—} :Eaﬁ.
F1 F1 0 0 4]y 4

3) Let Q be the domain which is surrounded by F; U (—F), where —F indicates that we have
reversed the orientation, such that the normal is pointing away from §2) on both F; and —F.

Now
div V =0+ 04 22?2 = 227 = 22%(2 — a) + 2az?,

so it follows by Gaufl’s theorem that

—/V~ndS+ V.ndsz—/v-nds+fa6:/ div V de,
F F 4 Q

F1

hence by a rearrangement,
o = /V nds =" af —/ divvd="q /2a$2dQ—/2x2(z—a)dQ
4 4 Q Q

= —a —a/dQJr/ 2 +y*)(a — 2)d9Q,

where we have used the symmetry in z and y in the domain of integration in the latter equality.

By the transformation z ~ a — z the half ball ) is mapped into the half ball
0 =A{(z,y,2) | 2® +9° +2* < a?, 2 > 0},

0
@:gaG—a/ (:1:2—|—y2)dQ—|—/ (2% + y*)z d.
(951

(o1

When we use the slicing method, we see that ; at height z € [0, a] is cut into the circle

B(z) :{(m,y,z)|x2+y2 §a2—22}:{ (z,y,2) | 0 < Va? — 2%}, z €0, a] fixed,
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thus

a/ (x2+y2)dQ:a/ {/ (x2+y2)d5}dz
Ql 0 B(Z)
a 27 a?—z2
(L
0 0 0

/a2 —22

a Q4
dp pdz = 27ra/ {—] dz
o L41o

:ga/ (aQ—ZQ)QdZZga/ (z* —2a%2% +a*) dz
0 0
5 2a2 a 5 )
:za Z—fiz3+a4z :Ea a—f—a5+a5
25 " 3 . 2915 3
T ¢ (1 2 AT
= — —_- — = 1 - -
2 ¢ (5 3 > 15"

and by some reuse of previous results,

/Ql(asz—&—yQ)de:/Oaz{/B(z)(x2+y2)dS}dz

_ T a2_22. _f12_23a_16
= 2/O(z a’) zdz—4{3(z a)]— a’.
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Finally, we get by insertion that

o = za6—a/ (x2+y2)d9+/ (2% + y?)zdQ
4 Ql Q1
T g A4Am 4 9w 4 ma® ma®
= T Tabp D=0 (151 =
1Y T Tt T e B =5

Example 4.5 Let a set Q C R? and a vector field V : R? — R3 be given in the following way,

2 2 _ .2
Q{(I7yvz) ‘ wSZS \/a2x2y2}7

a
V(z,y,z) = 2z +2y,2y + 2,2 + 2x).

The boundary OS) is oriented such that the normal vector is always pointing away from the body. By
F1 and Fy we denote the subsets of 0X), for which z > 0, and z < 0, respectively. Find the fluzes of
V through Fi and Fs, respectively.

A Flux through surfaces.

D Apply both rectangular and polar coordinates. Check Gaufi’s theorem. This cannot be applied
directly. It can, however, come into play by a small extra argument.

Fiannly, compute the fluxes.

Figure 18: The cut of the meridian half plane for a = 1.

I By using semi polar coordinates we obtain that

2

CLZZQQ—CL og 22+92§a2,

and the meridian half plane becomes like shown on the figure.

As

0 9 0
vol(£2) vol(21) +vol(Q3) = = - —a” + / mo(2)?dz = % a® + 7T/ ala+ z)dz

2 @ 2 7
= —Wa3+za/ 2tdt:—ﬂag+za3*—ﬂa3,
3 2 Jo 3
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and div V =2+ 2+ 1 = 5, it follows from Gauf’s theorem that

flux(F) = flux(Fy) + flux(F) = / V-ndS = / div VdQ = 5vol(Q) = 37T 8.
F Q
The parametric description of F; is chosen as
r(u,v) = (u,v, va? —u?— 112) , u? + 0% < d?,
thus
Q: 1,0,—* and Q: 0,1,—; ,
ou 2 —u2 _ 2 v /a2 — u2 — 2
from which we get the normal vector
e, €y e,
U
- - 1
N(u,v) = Lo a? —u? —v? :ﬁ(u,v, az—uQ—v2>,
a?—u?—wv
0o 1 v
2 —u2 — 2

which is clearly pointing away from the body, because the Z-coordinate is +1.

If we put B = {(u,v) | u? + v* < a*}, it follows from (z,y, 2) = (u,v, Va? — u? — v?) that

flux(Fy) = / V.-ndS = / V(u,v) - N(u,v)dudv
Fi B

= / (2u+20, 2v+ Va2 —u2—v2, Va2 —u2 —v2+2u)
B

1
———(u, v,V a?—u?—v?)dudv

2 —u2_02
1 2 2 /22 2
ﬁ{Zu +2uv+2v°+vy a?—u?—v
B Va2—u2—v
+(a® — u? —v?) + 2uv/a? — u? — v2}dudv

2 2 2 27 a 2 2 a 2
a‘+u°+v a“+ a“+t
B Va* —u*—v 0 0 Va“—p 0 a“—t

w/f {Lz - \/m} dt =7 [4@2\/112 it ;(\/aQ t)ﬂ 2

a
a2—t 0

ﬂ{4a2\/a2 - gag} = 10—7ra3.
3 3

Hence
357 107 5
3 P 3

flux(Fz) = flux(F) — flux(Fy) = 5 ¢ 3 5 ma’,
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and thus

1 . Y
flux(Fy) = % a® and flux(Fp) = % a’.

ALTERNATIVELY, JF> is given by the parametric description

1
r=(z,y,2) = (u,v, — (u? + 0% - (1,2)) , (u,v) € B,
a

thus

Jr 2u Or 2v
% = <1,0, a) og % = (0717 a)

and hence

,ax%,

2u 1 ;
N (u /0)781‘ o |1 o " (2“72”71)_
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This normal vector is pointing inwards, so we are forced to choose

2u 2v
(uav) l(uvv) (a’ P >
Then
flux(F2) = V~ndS:/ V(u,v) - N(u,v) du dv
Fa B
1 1 2u 2
:/ <2u+2v,2v+— (u2+v2—a2),— (u2+v2—a2)> . (—u7—v,—1) du dv
B a a a’ a
du? 4 402 2 1
:/ {L+ﬂ+i+_“(uz+v2_az)__ (UQHQ_@Q)}dudU
gl a a a a a

1
5/ {4u2—|—4v2—u2—v2+a2}dudv—|—0
B

2 3 3 a
:a—areal(B)+—/(uz—i-vg)dudv:mﬂ'az—i——'27T/ 0° - odo
a Jp a 0
6 a' bm
_ .3, 0T a4 _ om 3
wa” + a 4 2 a,

in accordance with the previous found result.

Example 4.6 Let K be the ball (xo;a), and let V be a C* vector field on A, where A O K. Prove
the following claims by using partial integration, Gaufl’s divergence theorem and the formula

v (x-x).

X =

N | =

1) If the divergence of V is a constant p, then
4 5
(x —xg) - V(x)dQ = — a’p.
K 15
2) If the rotation of V is a constant vector P, then

4

5
_ 5P
15 ¢

/ (x —xp) x V(x)dQ
K

A Generalized partial integration.
D Follow the guidelines.

I 1) It follows from

v ((x=x0) - (x = x0)) = 5 V (Ix —x0[?) ,

X =Xy =

DO —
N —
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and f(x) = ||x — xo||? that
1
[ c=x0)- Vi ae =5 [ v (Ix-xal?) - Vi do
K 2 Jk
1
[ neveolx-xalfas - 5 [ Jx-xol? v Vo
oK 2 Ja
2 1 2
a/ n~V(X)dS——p/Hx—x0|| dQ
oK 2" Ja

a 27 s
a2/V~V(x)dQ—1p/ {/ </ r2~r281n9d9>d¢}dr
JQ 2 0 0 0

1 a ™
pa2~vol(Q)—§p/ err-27r-/ sin 6 do
0 0

s
S|
S|

|

|
i

|
[\
3
[\
Il

—_—
[y
o

|
D
——
|
|
S|
S
3
s

N= N~ N~ N = N
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2) We can now replace - by x, hence
1
/ (x —x0) x V(x)dQ = —/ v ([Ix — x0[|?) x V(x)dQ
K 2 JKk

1 1
:—/ n x V(x) ||xfx0||2d57—/ |x — xo|* 7 XV d
2 Jox 2 Ja

1 1 a 2m ™
:—aQ/va(x)dQ——P/ {/ (/ T2-r251n9d9>d<p}dr
2 Q 2 Jo 0 0

:1a2P-vol(Q)—1P/ r4dr~2ﬂ'~/ sin 6 df
2 27 /o 0

1, dm 5 1 g _ 4 5
—{2a Sa 2a 27r2P—15a7rP.

Example 4.7 Let a be a positive constant. We let T denote the subset of
Ty = {(z,y,2) €R*| 2> 0, 2® + y* + 2* < 9a*},

which also lies outside the set
T = {(z,y,2) €ER® | 2® + > + ( —a)' < a®},

thus T =Ty \ T5.

1) Ezplain why T is given in spherical coordinates by

0e [O, g} , p€l0,2n], r € [2a cosb,3al.

2) Find the mass of T when the density of mass on T is u(x,y,z) = %.
a

3) Find the fluz of the vector field
V(z,y,z) = (mz +dzy, yz — 2y2,x2y2) , (z,y,2) € R3,
through OT .
4) Find the volume of the subset T* of T, which is given by the inequalities

x>0, y>0,2>+ax2+ 92

A Spherical coordinates, mass, flux, volume.

D Sketch the meridian half plane; compute a space integral; apply Gaufy’s theorem; once again,
consider the meridian half plane.

I 1) When we consider the meridian half plane, it follows immediately that
0
0e [07 5} and ¢ € [0, 27].
It only remains to prove that the meridian cut of 975 has the equation

r = 2a cos 6.
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Figure 19: The meridian half plane for T, when ¢ = 1. The angle between the Z-axis and the dotted
radius is 0. The two dotted lines are perpendicular to each other.

Draw a radius and the perpendicular line on this as shown by the dotted lines on the figure.
Together with the line segment [0,2a] on the Y-axis these form a rectangular triangle. The
angle between the Z-axis and the dotted radius is 8, and the hypothenuse (the line segment on
the Z-axis) is 2a. Hence, the closest of the smaller sides (i.e. placed up to 97%) must have the
length 2a cos@. This proves that the equation of 075 is

r = 2a cos 6.

It then follows that r € [2a cos#,3a] in T

2) We have in spherical coordinates

wlz,y,z) = L cos 6,

at a?

hence the mass

M

3) From

5 27 3a 1
/udQ:/ {/ {/ — 1 cosf - r? sinﬂdr}dcp}dﬁ
T 0 0 2a cosf @

2 3 473a 3

—Z cos @ -sinf [T—} df = I/ (81—1600549) cos 6 sin 6 df
a 0 4 2a cos 0 2 0

[ 8 , 16 1% w(81 16\ =« 1177
Sl cos?l+ — cos®l| == (-2 ) == (243-16) = ——.
2{ g SV o L 2(2 6> 12 )= 13

divV=z+4y+2—-4y+0 =2z,

follows by Gauf}’s theorem and 2) that the flux is

/ V-ndsz/ divvcmz/2zd9:2a4/ud92%a4.
or T T T 6
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Figure 20: The meridian cut of 7™ is the domain between the two circular arcs lying above the line
z = o.
4) By analyzing the meridian half plane once more we see that 7* is given by
0e [07 g} , Y€ {—i—,g} , T €[2a cosb,3al,

hence the volume is

I 3 3a z RS
vol(T%) = / / / r? sinfdrydp pdf = i / sing - | =3 do
0 0 2a cos 6 2 0 3 2% cos

a3/4 (2778(;0530) sinf df = %a?’ [727c059+2cos49]0%
0

>n @y

27 2 us

3 3
——+-427T-2) = — (51 —27V2)a".

a ( 7 +o T ) 12( V2)a

Example 4.8 Let a be a positive constant and consider the function
f(z,y,2) = a®z? + Py + 24, (z,y,2) € R,

1) Find the gradient V.= <7 f and the tangential line integral

/V~tds,
K

where K is the line segment from (0,0,a) to (2a,3a,0).
2) Find the flux of V through the surface of the half sphere given by
m2—|—y2+z2 <a? and z>0.

A Gradient; tangential line integral; flux.

D Apply Gauf}’s theorem in 2).
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I 1) The gradient is
V = vf = (2d°z,a®,42°).
Now, V is a gradient field, V = v/ f, so
/}CV~tds = f(2a,3a,0) — f(0,0,a) = (a® - 4a® + a® - 3a) — a* = 6a™.
2) We get by Gauf’s theorem,
flux(dL) = / V -ndS = / div VdQ = /(2a2 +1222) dQ
oL L L

1 4 4 @
= 2a2-—~—ﬂa3+12/22d§2:—a5+12/ 22 w(a® - 2%) dz
23 . 3 ;

I

|
gcn
+
—
[\
3

4 1 1 ¢4 24 44
m [a2 3 5] _ AT 5 5 7Ta5_
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Calculus 2c-9 Gaup's theorem

Example 4.9 Given the tetrahedron
T:{($,y,Z)ER3|0§:L‘,0§y,47$*2y§2§8721’*4y}

and the vector field
2 . L o5 2 2 3
V(z,y,z) = | zcosz+3yz, 2 y+xsinh z, 37 sinx+3x°—5y° |, (x,y,2) € R".

Find the flux of V through OT.
A Flux of a vector field through a closed surface.
D Apply Gau}’s theorem.

I It follows from

1
divV = %Jra% +8V3 :—zsinx+z3+§-2zsinx:x2,

dr oy | 9z
by Gaufl’s theorem that the flux of V through 07T is given by

(3)/ V-ndSZ/ didexdydz:/xdedydz.
oT T T

The bounds of the tetrahedron give the estimates
4—x—2y<z2<8—2x—4y=2(4—x—2y),

hence 4 — x — 2y > 0, and thus 0 <z < 4 — 2y and 0 < y < 2. By a reduction of (3) we then get

2 4-2y
/ V-ndS:/xdedydz:/ {/ (/ 8—2x—4yw2dz>dm}dy
oT T 0 0 4—x—2y
2 4-2y 2 4-2y
:/ {/ m2(4—x—2y)dx}dy: / {/ (42 —x3—2yx2)dx} dy
0 0 0 0

Ze-w-fe-n-Tie-vha

2 2 2
16 4 11 128
2 — 4d = — t4dt:— —t5 = —.
/0( y)"dy 1zA 3 {5 o 15
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Example 4.10 Given the vector field
V(z,y,2) = (4o + 3y>, 92y + 2,y) , (z,y,2) € R,
1) Find div V and rot V.

2) Show that V is a gradient field and find all its integrals.

3) Compute the tangential line integral
/ V-tds = / (4z + 3y>) dx + (9zy® + 2) dy + y dz,
K K

where IC denotes the line segment from the point (0,0,0) to the point (1,1,1).

4) Find the flur of V through the unit sphere x® + y? + 2% = 1 with a normal vector pointing away
from the ball.

A Vector analysis.
D Follow the guidelines

I 1) We get by direct computations

div V = 4 + 18zy?,

and
e €2 €3
B 0 0 g | 2 2\ _
rot V = 52 o9 5 =(1-1,0-0,99* — 99°) = (0,0,0),

4r+3y3 9y’ +z oy

and we note that V is rotation free.

2) Since the field is rotation free and the domain is simply connected, we conclude that V is a
gradient field. Then by calculating the differential form,
V - (dz,dy,dz) (4o 4 3y*) dx + (92y* + 2) dy +y dz
= dxdr+3(y*de+z-3y°dy) + (zdy + ydz)
= d (23:2 + 3zy® + yx) ,

and it follows once more that V is a gradient field with all its integrals given by

F(z,y,2) = 22" + 32y’ +yz+ C, CeR
3) We have proved that V is a gradient field with an integral F'. Then it follows that

/V~tds = /(4x+3y3)dz+(9xy2+z)dy+ydz
K K

1,1,1 (1,1,1)
= [F(z,v, Z)]EO,O,Og = [2:102 + 3xy® + yz| 000) = 2+3+1=6.
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4) An application of Gauf’s theorem gives

47 167

V.ndsz/divVdQ:/(4+18xy2)d9:4v01(9)+0:4-—:—,
20 Q o 3 3

because fQ 18zy? dQ) = 0 of symmetric reasons. The integrand is odd in z, and the body is
symmetric with respect to the (Y, Z)-plane.

Example 4.11 A body of revolution L with the Z-axis as axis of rotation is given in semi polar
coordinates (o, ¢, z) given by the inequalities

2

0 < <2m, —a<z<a, OSQSQ—Z—7
a
where a € Ry is some given constant.
1. Compute the space integral
I = / 22 dSQ.
L

Given the vector field

V(z,y,z) = (cos T,y sinx,z3) , (z,y,2) € R3.

2. Find the flux

V -ndS,
oL

where the unit normal vector n is pointing away from the body.

A Space integral and flux in semi polar coordinates.

D Slice up the body; apply Gauf}’s theorem.

054

017702 04 06 08

Figure 21: The meridian curve when a = 1.
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I 1) Tt follows from the rearrangement

2
o-ofo- )
a
that the meridian curve is an arc of a parabola.

The space integral is computed by the method of slicing,

a 22 2 a Z4
/szQ:ﬂ'/ (a——) szz:27r/ <a2—222+—2>22dz
L —a a 0 a
a 6 2 7 7a
2,2 4, % _ a* 3 2 5z
or | { o *ﬁ}dz—% [?z 57 +7—}

1 2 1 2ra’ 167a®
= 2ma® (= — =42 ) ="—(35-42+15) = .
i (3 5+7) 105 ( +15)

1

2) The flux is according to Gauf’s theorem given by

V. .-ndS = /dideQz/{—sinx+sinx+sz2} dQ)
oL Q Q

167a®
= 3 [ 22d0=3I=
/Qz 35

where we have used the result of 1).
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Example 4.12 Given the vector field

V(z,y,2) = (3z2% — 2%, 3y2? — %, 32(2* + ¢?)), (z,y,2) € R?,
and the constant a € R
1. Show that V 1is a gradient field and find all its integrals.

Let IC be the curve which is composed of the quarter circle of centrum at (0,0,0) and runs from (a,0,0)
to (0,a,0), and the line segment from (0, a,0) to (0,a,2a).

2. Find the tangential line integral

/V~tds.
K

3. Find the flur of V through the surface of the ball of centrum (0,0,0) and radius a.

A Vector analysis.

D Each question can be answered in several ways. We shall here demonstrate some of the variants.
I 1) First note that V is of class C'*°.

First variant. Prove directly by some manipulation that the differential form V - dx can be

written as dF where F' then by the definition is an integral. Do this by pairing terms which
are similar to each other.

V.dx = (3x2% —2%)de + (3yz? — y*)dy + 32(2* + y*)dz
1 1
= D) - L) + 5 ) — ) + o @+ yPd(?)
_ 3. o9 oy 1 g4 1 4
It follows immediately from this that V is a gradient field and that all integrals are given

by
3 1 1
F(Z‘,y,Z): §(x2+y2)2'2—1x4—1y4+0,

where C' is an arbitrary constant.

Second variant. Clearly, R? is simply connected. Furthermore,

oL, oM _, oL _ou
oy or ° oy oz’
OL g ON o 0L _oN
8. P Tar T 0T e T
oM ON oM _oN
az_y’ay_y7 0z oy’

Since all the “mixed derivatives” are equal, it follows that V - dx is closed and thus exact.
This means that V is a gradient field and the integrals of V exist.

In this variant we shall find the integrals by using line integrals. There are two subvarants:
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a) Integration along the broken line

(0,0,0) — (2,0,0) — (2,4,0) — (2,9, 2).

In this case,
T Yy z
Foe,y,2) = / (—t%)dt + / (—t%) + / 3t(a2 + y?)dt
0 0 0

3 1
= 3 (2 +y?)2" - 1 (' +y).
The integrals are

3 1
F(IL’,y,Z) = 5 (12 +y2)22 - Z(x4 +y4) +Ca

where C' is an arbitrary constant.
b) Radial integration along (0,0,0) — (x,y, 2).
The coordinates of V are homogeneous of degree 3. Hence,

1 1 1
Fo(z,y,2) = (2,9,2)- ((3xz2—x3)/ t3dt, (3yz2—y3)/ tgdt,3z(x2+y2)/ t3dt>
0 0 0

1
= (@2 (a2 2,32 — P B2(a +2)

1
= 3 {32727 — ' + 3y%2% — y' + 322 (2% +47)}

3 1
= 5 (I2 + y2)2’2 — Z (I4 + y4)
The integrals are

3 1
F(xay’z> = 5 (x2 +y2)22 - Z (l’4 +y4) +C7

where C' is an arbitrary constant.

Third variant. Start by one of the variants 2a) and 2b) above without proving in advance
that V is a gradient field. The possible candidates of the integrals are

3 1
F(x,y,z) = 5 (x2 —|—y2)22 - Z ($4 +y4) +C.
Check these!:
vF(xa y:z) = (35622 - 1,3’ 3y22 - yB’ 3Z($2 + y2)) = V(I, Y, Z)

This shows that V is a gradient field and its integrals are given by
3.9 oy Lo4 4

where C' is an arbitrary constant.

Fourth variant. Improper integration.
First put

w=V.dx = (3z2° — 23)dx + (3yz* — y*)dy + 32(z* + y?)dz.
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By an improper integration of the first term on the right hand side we get
v 3
Fi(x,y,2) = / (3tz* — t3)dt = B 22?2 — gt

The differential is

dFy = (322 — 2%)dx + 3222 dz,
hence

w—dF, = (3yz? — y*)dy + 32y° dz,
which neither contains x nor dzx.

When we repeat this procedure on w — dF; we get

Y np2 3 309 14
Fg(y,z):/ (3tz —t)dt:§yz 1Y

with the differential

dFy = (3yz% — y*)dy + 32y%dz = w — dF}.
Then by a rearrangement,

w=V.dx =dF +dF}; =d<gm222—ix4+;y2z2—iy4) ,
proving that V is a gradient field with the integrals

Flay2) = 5 (@ 4377 = 1 (@ +y') + €,

C being an arbitrary constant.

Figure 22: The curve K for a = 1.

2) Here we have two variants.
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First variant. Since V is a gradient field with the integral
F _ 3. v L4 o4

and /C is a connected curve, we have

/V-tds —  Fy(0,a,2a) — Fo(a,0,0)
K

3 1 1
= 5(02+a2) -4a® — Z(O4+a4)+ Z(a4+04) = 6a’.
Second variant. The definition of a tangential line integral.
The curve K is composed of the two subcurves

K1 (x(t),y(t),z(t)) = a(cost,sint, 0), te [0’ g} ,

Ko: (2(t),y(t),2(t)) = a(0,1,8),  t€l0,2].

o
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First calculate

V. .tds =

3
S~
w3

I
S
[NE)

{0053 t-sint —sin®t - cos t} dt

',

a’ 4 45 _a
= 7 [—cos®t —sin ] :Z{—l—i—l}:O,
and
2
V.tds = /a3(0,3t2—1,3t(02+12))-a(070,1)dt
’Cz 0

2 3
= a4/ tdt ==a*-4 = 6a’.
O 2

Summarizing we get

V -tds =0+ 6a* = 6a.

/V~tds: V -tds+
K K1 Ko

3) This problem can also be solved in various ways.

First variant. According to Gauf’s theorem,

622 dS),

flux = / div VdQ =
K(0;a) K (0sa)

because

div V =322 — 322 + 327 — 3y® + 3(2 + ?) = 622

a® (— cos®t, —sin® ¢, 0) -a(—sint, cost,

0) dt

The computation of this integral is most probably performed in one of the following sub-
variants, although there exist some other (and more difficult) ways of calculation.

a) Partition of K(0;a) into slices parallel to the XY -plane.
By using this slicing method we get

flux =

a

/ 62% area(K(0,0); v a2 — 22)dz = /
oo 4 1,5 1 4]°
= 127 | (a2 —2%)dz=12n|za"2" — -z
0 3 5 o
b) Computation in spherical coordinates:

2m ™ a
/ 6z2dQ:/ {/ (/ 612 cos? @ - 12
K (0;a) 0 0 0

flux

/ 622 dQ) = / 622 dxdy p dz
K(0;a) —a K((0,0);v/a2—22)

6221 (a? — 2%) dz

sin sin dr) dG} dy
5

5

= 27r/ 6(30529~sin9d9~/ 7“4d7":27[2(_00539)]g'a_
0 0

4
§a5(1+1) = 8%&5.
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Second variant. Direct application of the definition.
Put F = 0K (0;a). Then the unit normal vector field on F is given by

n=-(z,y,2).
L (@y.2)
By insertion into the definition,

1
flux = /V~nd5:5/{3x222fa:4+3y2z2fy4+322(x2+y2)}d5
F K

1
= - / {62%(2% + y?) — x* — y*} dS.
aJF
We shall in the following compute this surface integral in two different ways. Notice that
there are many other possibilities. In both of these two subvariants we shall need the
following:
Calculations:

2
(4) (cos p +sin® ) dip

S—

0

2m
/ (cos4 o+sin? p42sin? ¢ cos? ¢—2sin? ¢ cos? ga) dy
0
2 2 1
/ {(0052 @ + sin® np) -5 sin? 2<p} do
0
1

s

3 3
(1 —cos4g0)}dap: or =2

4 2

DN | =

017702 04 06 08

Figure 23: The meridian curve M.

a) Consider the surface F as a surface of revolution with the meridian curve

M: o(z) = Va? - 22, z € [—a,al,
thus
x(z) =vVa? =22 cosp, y=+a?—22sing, z=z,

and the weight function

2

VA4e'(2)}? + :\/1+G2Z_Z2:\/ = =

a2_22 a2_22-
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By insertion into a suitable formula we get
1
flux = —/ {622 (xz +y2) —zt - y4} ds
aJrF

a 2m
_1! / { {622([a® — 2% cos® ¢ + [a® — 2%] sin? @)
0

a —a
2 232 4 .4 Va? —22-a
—(a*—z cos” p+sin dpt ———— dz
( )" (cos™ ¢ p)}dp} =0

[ 6 @2t print e

—a

:/a {271—.622(a222) 37”(@222)2}612 (ved (4))

—a

a 3 a
= 127r/ (a222—24)d2—7ﬂ— (a*—2a2*+2%) dz

—a —a

2 1 ] 3 2 1
=2-127 a—z3——z5 —2~—7T atz—Za?4+ 220
3 5 0

2 2 1 16 3\ 8ra’
:247m5~ﬁ—37ra5<1——+—>:7m5-<——1——>: e

3 5
b) ALTERNATIVELY it follows by the symmetry that the flux through

Fi ={(z,y,2) e F 220}

is equal to the flux through F \ F, thus

2
flux = — {622(2? + y?) — 2* — y*} dS.
a Fy

The surface F. is the graph of

Z:\/a’2_$2_927 (x,y)eB:{(:v,y)|x2+y2§a2},

and the normal vector is

dz 0z T y
N _ (22 %2 ) 2 1
(x7y) ( 8x’ ay7 ) <\/a2_x2_y27 \/&2—$2—y27 )7

hence
a
N(z, = —
Then by

i) reduction of the surface integral to a plane integral,
ii) reduction in polar coordinates,

iii) application of the calculation (4),

iv) the change of variable t = /a2 — 2, i.e.

r

r’=a®>—t> og dt=— dr,

2 _p2

a
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we finally get

2
flux = 5/{6(@2—x2—y2)(x2+y2)—x4—y4} a = d dy
B

a2 —22 —y

27 a
= 2/ { 6(a?—r?)r?—r*(cos* p+sint ¢ Ldr} dy
[t ) s

Q/Oa{127r(a2—r2)7“2—3—7r r4} Lﬂdr (by (4))

) 02—

:7r/ {24¢*(a® —t*)—3(a®—t*)*} dt

0

=n / {24a%t* —24t* —3a* +6a>t* — 3t} dt
0

; 24 30 s 27
=Ta {8€3+25}7ra {7 E}

s 35-27 8md®
=na’  —— = .
5 5

o
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Example 4.13 Let a be a positive constant. Consider the set
A={(z,y,2) eR® |2 + ¢’ <a®, 0<y, —y <w <y, |2| < 2a},
1) Describe A in semi polar coordinates (o, p, z).

2) Compute the space integrals

I:/de, J:/ydm K:/szQ.
A A A

3) Find the fluzx of the vector field
V(z,y,z) = (3xz2—|—coshy,zQex,zS—Saa:z—Fsinhy) . (z,y,2) € R,
through the surface OA with its normal vector pointing outwards.
A Space integrals; flux.
D The first two problems are solved by the reduction theorems. In 3) we apply Gauf’s theorem.

08

0.6

0.4

0.2

Figure 24: The domain B for a = 1 lies inside the upper angular space and inside the half circle.

I 1) Clearly, A is a cylinder with a quarter disc B in the (X,Y)-plane as generating surface. Thus
A is described in semi polar coordinates by

3T

—, —2a<2<2 .
1 a<z< a}

s
AZ{(Q,%Z) ‘ 0O<o<a 7<¢<
2) By an argument of symmetry (first integrate with respect to z) we get

I:/de:O.
A

ALTERNATIVELY,

37
Y

2a a
/de:/ {/ (/ QCOSQD-ngD) dg}dz
A —2a | Jo z

I
1

3w

4

a3 3w

= 4a/ g2dg~/ cospdp =4a- — [sinp]+ =0.
0 3 4

jus
4
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Furthermore,

2a a 37"
J /de:/ {/ (/ gsincp~gd<p> dg}dz
A —2a 0 =

i
a3 s 4a? 1 } 4v/2a*
3

3z 1
= 4da-—|[—cosp|s = — 4 —=+—=
3[ elg 3 {\/i V2

Finally, by the slicing method,

2a
K:/deQ:/ 2% areal(B)dz = ~ -
A —2a 4
3) By an application of Gauf}’s theorem,
flux = / div VdQ = / {322 +0+32% - 3az} dQ = 6K — 3al = 8ma®,
A A

where we have inserted the values of K and I found in 2).

Example 4.14 Consider the function
F(z,y,2) = 2* + z e sinz, (z,y,2) € R3,

and the vector field V = 7 F.

1) Find the divergence <7 -V and the rotation 57 X V.

2) Check if V has a vector potential.

3) Find the flux of V through 0A, where A is the half ball given by the inequalities
:z:2+y2+22§9, z <0.

4) Find the fluz of V through the surface F given by
x2—|—y2+z2=9, z <0.

Show the orientation of F on a figure. (Hint: Use that the surface F is a subset of the surface DA
of 3).

A Divergence, rotation, flux.
D Find V. Use the rules of calculations and finally also Gauf}’s theorem.
I 1) First compute
V=ylF= (4x3 + €Y sin z, xe¥ sin z, xe? cos z) .
Then
V- -V=v vVF=AF =12z? 4+ ze¥sin z — xe¥ sin z = 122>
and
VXV=yxvyF=0,

which is obvious because V is a gradient field and thence rotation free.

Download free books at BookBooN.com

86



Calculus 2c-9 Gaup's theorem

Figure 25: The body A.

2) Since V is not divergence free in any open domain, V does not have a vector potential.

3) We get by Gauf}’s theorem, an argument of symmetry and using spherical coordinates,

fAlux(94) = /8AV~ndS:/Av-VdQ:12[4x2d9=12/Ay2d9:6/A(x2+y2)dQ

27 ™ 3
6/ / (/ ’I“QSiIl2(9-7“QSin9dT> d@}d(p
0 z 0

2

.\,\\ —N—

T 3
= 6-27 (1—00520)sin9d9~/ rdr
T 0
12 1 T 12 2 1944
= %-35- —cos@—l—gcos?’H} :Tﬁ~35-§: 57r'

s
2

4) Let G denote the disc in the (X,Y)-plane with the unit normal vector field pointing upwards,
and let F denote the half sphere with the unit normal vector field pointing downward. Then
according to 3),

1944
flux(0A) = flux(F) + flux(G) = 5 T
Since n = (0,0,1) on G, it follows by a rearrangement that
1944 1944 1944
flux(F) = T flux(G) = t —/ [ze¥ cosz] _, dS = T / ze¥ dS
5 5 o 5 g
19447 [? Vo-y? 19447 19447
= - eY rdx pdy = —-0= ,
5 3 - 5 5

where we for symmetric reasons compute the plane integral over the disc in rectangular coor-
dinates.
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Example 4.15 The set Q C R? is given in semi polar coordinates (o, p, z) by the inequalities

<p<

vl 3
b 3

. 0<z<h, Oﬁgéa(l—%),

where a and h are positive constants.
Also given the vector field

U(z,y,z2) = (x3z +2ycosx, Y3z +y?sinz, x2y2) , (z,y,2) € R3.
1) Find the divergence 57 - U.
2) Find the fluz ® of the vector field U through the surface Of).

A Vector field, flux.

D Sketch a figure. Apply GauBl’s theorem.

Figure 26: The body €2 for a =2 and h = 1.

o
e

-0.2 X

Figure 27: The meridian cut of  for ¢ € [—g, g] and a =2, h = 1.
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I We see that Q is (half of) a cone (of revolution) with the top point (0,0, k) and a half disc in the
(X,Y)-plane as its basis.

1) The divergence is
divU = - U = (32%2 — 2ysinz) + (3y?z + 2ysinz) + 0 = 3z(2* + 3?).

2) By applying Gauf}’s theorem and reducing in semi polar coordinates we conclude that the flux

18
hi( r3 a(1-%)
o = /dideQ:/Sz(:c2+y2)dQ:/ / / 320% - odo | dp p dz
Q Q 0 -z \Jo
- 3 /h /a(1z) 3 dz — 3 1 4p2 _ m 452
= 7TOZ ; 0”0 Z—7T120(1 f40a .
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Calculus 2c-9 Gaup's theorem

An ALTERNATIVE computation is
o = [ da(-) a=Tan -0 0-1) e
= e {00 e e [

3m 4.9 (1 1 T 4.9
= Tatpz (- 2) = Zatpz
1 (5 6) 10"

Example 4.16 Find the divergence and the rotation of the vector field

1
V(I,y,Z) = (21: +l’y,7l’ - §y2,32) ’ (,I,y7Z) € Rgv

and find the flur of V through the unit sphere x% 4+ y> + 22 = 1, where the normal vector is pointing
outwards.

A Divergence, rotation and flux).

D Apply GauBl’s theorem.

I The divergence is
divV=24+y—y+3=5.

The rotation is

e, ey e, e. e, e
0 0 0 9 o 0

1
20 +zy Tx — 3 y? 3z xy Tr 0

By Gauf}’s theorem the flux through the surface F of the unit sphere is given by

20

4
/V-ndS:/ dideQ:/5dQ:5vol(Q):5-—7r-13: :
F Q Q 4 3
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Example 4.17 .
1) Find the volume of the body of revolution

a={@paems

1 1

2) Find the flur of the vector field
V(z,y,z) = (y2 + oz, x2? — ya?, x22) , (z,y,2) € R3,
through OA, where the unit normal vector is always pointing away from the body.
A Volume and flux.

D Sketch a section of A in the meridian half plane. Apply the method of slicing by finding the volume.
The flux is found by means of Gauf}’s theorem.

~0.5

1
Figure 28: The meridian cut for A. The boundary curve has the equation z = 3 0 —1.

I 1) It follows from the sketch of the meridian half plane that the domain is described in semi polar
coordinates by

0<0< V2242, —1<2<1,

and that the body of revolution is a subset of a paraboloid of revolution.

THE SLICING METHOD. The paraboloid of revolution is intersected by a plane at the height
z €] —1,1] (the dotted line on the figure) in a circle of area
m-0(2)? = 2n(z 4+ 1).
Thus the volume of the body of revolution is
1
vol(A) = /1 2m(z 4+ 1) dz = [r(z + 1)2]171 = 4m.

2) According to Gauss’s theorem, the flux of V through 0A is given by

/ V-ndS:/dideQz/ {1—2%+2%} d = vol(A) = 4.
aA A A
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5 Stokes’s theorem

Example 5.1 Apply in each of the following cases Stokes’s theorem to find the circulation of the
given vector field V : R3 — R3 along the given closed curve K, we one shall indicate the direction of
the curve on a figure.

1) The circulation of the vector field
V(z,y,2) = (ysinh(zy) + 22, zsinh(zy) + 22 + z, 222 + 29°)
along the closed curve K given by x> +y?> =1, z = 1.
2) The circulation of the vector field
V(z,y,2) = (y* + 2% (x — a)? + 24, 22 + %)
along the closed curve IC given by
2?2 +y? =bx, z'=da*>—2%—9y% whereb<a and z > 0.
3) The circulation of the vector field
V(z,y,2) = (y,x —yz,z°)
along the closed curve K given by
22 y? =1, z=4—22% — %
4) The circulation of the vector field
V(z,y,z) = (yz — 2y, xz + dx, xy)
along the closed curve K given by
o=1+cosp, z=+/A—0> forypecl[-mm7]
5) The circulation of the vector field
V(z,y,2) = (y* — 2zy, 22y, 20z + 3a°)
along the closed curve IC given by

2?4+ y* =azx z=a— 2%+ 92

6) The circulation of the vector field V(z,y,z) = (z,z,y) along the boundary of the triangle KC of
vertices (0,0,1), (0,1,0) and (1,0,0).

7) The circulation of the vector field V(x,y, z) = (y, z,x) along the closed curve IC given by
x2+y2+22:a2, Z=1Yy—.
8) The circulation of the vector field V(x,y, z) = (y + sin z, x, x cos z) along the closed curve K given
by
w2 o+ 2% =1, z=2x.
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Figure 29: The curve K of Example 5.1.1.

9) The circulation of the vector field V(x,y,z) = (22, ax + 22,22% + 2y?) along the closed curve K
given by

x2+y2:a2, Z = a.

10) The circulation of the vector field
V(z,y,2) = (—y(a® +227), 2(2” + 49% + 22%), 2°)

along the closed curve IC given by

J;2+y2=a2, zZ=aq.

A Circulation of vector fields.

D Sketch the curve and choose a direction of it. Compute rot V, and choose the surface F. Finally,
apply Stokes’s theorem.

I 1) The most obvious choice of the surface is
F={(z,y,1) |2 +y* <1}
where the orientation is given by the normal vector n = (0,0, 1). Hence

n-rotV:%—aV‘T

ox oy

= sinh(zy) + xy cosh(zy) + 1 — sinh(zy) — zy cosh(zy) = 1.
According to Stokes’s theorem the circulation is then

/V~tds:/n~rot VdS =1-area(F) = .
K F

2) If we choose the orientation of K, such that the projection of the curve onto the XY-plane has
a positive direction, it is quite natural to choose the corresponding surface

F = {(m,y, V22 —x?—y?) | 2? + P be},
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Figure 30: The curve K of Example 5.1.2 for a =4 and b = 2.

with the normal vector n-e, > 0. We first find

ez ey eZ
rot V= % f% % = (2y — 423,42% — 22, 2(x — a) — 2y).

.
. .
A\
iy \‘.‘ <
27\
(27777 XX/ b
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Figure 31: The curve K of Example 5.1.3

Then calculate the normal vector of the surface F,

Cr €y e, Cr €y €,
1z
N(z,y) = 1 0 —3a(a2—22—y?)73% | = 1 0 55
0 1 *%y(4a27x27y2)*3 01 1y
2 23
_ (lz 1y |
22372237 )7
hence
LV 1 {1 —(2y—1 Nl Y48 0n) 1o )2}
n-ro - - y—4z B9y cma)—2y
IN(z,»)ll 12 2 2 28
! { Y 2a
TN T o5 28 +2y— —+2x 20— Qy} e
NG NG

Choose the parameter domain

B ={(z,y) | 2> +y* | ba}.

According to Stokes’s theorem the circulation of V along the curve K is given by

/V-tds = /n rot VdS = / IN(z,y)|| dz dy
K F HN )||

b 5
= —2aarea(B)=—2a-7 (2) =—3 ab?.

3) Here we choose the surface

F={(z,y,2-22% —y?) | 2* +y* < 1},

where the boundary curve K is oriented such that it is positive in the XY -plane. Then n-e, > 0

for the normal vector on F.
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Figure 32: The curve K of Example 5.1.4

Then by computing,

e, ey e,
0 0 0
t V= = (y,—2x,1—-1) = (y, -2 .
y r—yz a?
and

0 1 =2y
hence
tV L 90,29,1) - (g, =22,0) = 0
n-ro = TNt N z, 2y, Y, —4x, = U.
IN(z,y)|l

Then it is easy to find the circulation,

/t-Vds:/n-rotVdS:O.
K F

Choose the surface which is given in semi polar coordinates by

F= {(9790;\/4*92) |0<o0<1+cosp, pe [*wr]} ={(0,¢, V4 —0?) | (0,) € B},

where the parameter domain

B={(0,p)|0<0<1+cosp, p€[-mm]}

lies inside the cardioid.
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0.5

05 1 15

0.5

Figure 33: The parameter domain B of Example 5.1.4.

Choose the orientation of K such that the projection of I onto the cardioid is run through in
the the positive sense of the plane. Then by a computation,

e, ey e,
0 0 0

tv=| = =2 L@ zy— 4—2492)= .

ro . a9 % (x—z,y—y,z+4—2+2)=(0,0,6)

yz —2y wzz+4+4x xy
The surface F is described in rectangular coordinates (though in polar parameters) by

(z,9,2) = (0 cos p, o sinp, /4 — 0?).

This rectangular description is necessary when we compute the normal vector by the usual
method,

€, €y €,
- 4 0’cosp  o’sing
N 0,p) = Cos ¢ s @ T 5 | = ) y 0
ee) 4 Vi—@? i- @
—osinp o cosy 0
thus
6o
n-rot Vo=_—"—.
1B (o, )

The circulation along I is

/ GQ T 1+4cos ¢
———dS = / 6gdgd<p=/ {/ ngg} dy
F ||N(Qa 90)” B -7 0

= / 3(1+cosg0)2d<p:3/ (14 2cos ¢ + cos? @) dp

—T —T

g 3
3/ {1+0052<p} d<p+0:§-3~27r:977.
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Figure 34: The curve K of Example 5.1.5 for a = 1.

5) Choose the surface

F=A{(z,y,a— Va2 +y?) | 2* +y* < azx} = {(z,y,a — Va2 +¢?) | (x,y) € B},

where the parameter domain B is described in polar coordinates of the plane,

B={(9,s@) ‘ o<acosp, pe {—gg”
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Figure 35: The surface F of Example 5.1.6.

Then
e, ey e,
0 0 0
rot V= Ep By 5
y? —2xy 2zy 2az + 3a®
and
e, e, e,
1 0 _
N(z,y) = Nz
o 1 -9
VR

= (0,0723] - 2y + 21‘) = (0,0,2$),

x Y

) 71
Vatay? Vet

The circulation af V along K is then by Stokes’s theorem,

/t~Vds:/n-VdS:/N-dedy:/2xdxdy
K F B B

™

Bl

SERN

us
2

1, (2
ZEa 1+2cos2¢p+

us
2

s
2

jus
2

> a cos @ 5 ) a cos @
:/ {/ 20 cosap-gd@} d<p=/ {— 93] cos
_ 0 _= |3
2 2
:/_ §a30084g0d<p=§a3/_

pdp
z 0
2
1+ cos 2<p>
2
1 4 1 3
;gﬁﬁ)wzéﬁiﬁzgﬁ
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6) First calculate

€z

0
rot V= —
T

z

We choose naturally the surface F in the following way

=(1,1,1).

with the normal vector

ex
N(z,y)=| 1
0

The circulation of the vector field along /C is then

/t~Vd5:/n~rot VdS:/Norot dedy:3area(B):§.
K F B 2

Cy
0
1

€.
-1
-1

= (1,1,1).

7) Choose F as the plane surface (a disc)

F={(z,yy—a)|2*+y*+ (y —2)* <’}

with N - e, > by the chosen orientation. We get

e,
0
tV=| —
ro ox
Yy
and
e,
N(z,y)=| 1
0
thus

N-rot V=(-1,-1,-1)-(1,-1,1) = —1.

The projection B of F onto the XY -plane is given by
2 2 2 2 2 2 1 2
oz +ty t(y—a) =" +y —S(z—-y) +5

which describes the interior of an elliptic disc with the directions of the axes

Cy
0
1

€z

0z

= (-

1,-1,-1

2

() = ()

)

100

Download free books at BookBooN.com



Calculus 2¢-9

Stokes’s theorem

Figure 36: The curve K of Example 5.1.8.

Figure 37: The curve K of Example 5.1.9 and Example 5.1.10 for a = 1.

and the half axes a and i.

V3

The circulation is

/t-Vds:/n-rot VdS:/N~r0t Vdrdy = —area(B) = —m -
K F B

8) Since
€
0
tV = —
ro B
Y+ sin z

€T

X COSZ

5

= (0,cosz —cos z,1 —1) = (0,0,0),

the circulation is trivially 0 by Stokes’s theorem.

101

Download free books at BookBooN.com



Please click the advert

Calculus 2¢-9 Stokes’s theorem

9) Here
e, ey e,
rot V= 5% (% % = (4y — 22,2z — 4z, a).

22 ar4 22 2224297

We have n = (0,0,1) in the chosen orientation of K, so the circulation becomes

/t~VdS=/n'I‘0t VdS:/adwdyza-area(B):ﬂ'a?’.
K F B

ALTERNATIVELY it is here also easy to compute the circulation as a line integral. We choose
the parametric description

(z,y,2) = (a cosp,a sinp,a), € [0,27],
for K. Then we get the tangent vector field

tds = (—a sinp, a cos p,0)dp,
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Business School
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hence
2m
/t~Vds = / (—a sinp, a cos @, 0) - (a®,a? cos ¢ + a?,2a%) dy
K 0
2T
= a3/ (—sin @ + cos? ¢ 4 cosp + 0) dg
0
2m 27
a3/ cosznpdgo:ag/ sin? p dyp
0 0

27 : 2
a3/ —C082 Pt sin” 14 dp = a—S / dyp = wad.
0 2 0

2

10) The surface F is the same as in Example 5.1.9, so we can reuse n = N = (0,0,1) and

n-rotV:%—aVr

=32% + 4y + 227 + 2% + 222 = 4(2® + 9% + 27).
ox oy

Now z = a on F, so the circulation becomes

/t~Vds = /n-rot VdS:4/(x2+y2+a2)dxdy
K F B

27 a
4/ {/ 0% gd@} do + 4a? - ma? = 2ma* + 4wa®* = 6mat.
0 0

Example 5.2 Apply in each of the following cases Stokes’s theorem to compute the flux

/ n-rot VdS
‘F

of the rotation of the given vector field V : R? — R3 through the surface F, where we shall choose an
orientation, which is indicated on a figure.

1) The flux of V(x,y,z) = (y?,x — 222, —xy) through the surface F given by z = \/a? — x2 — y2 for
2% + 9% < a?

2) The fluz of V(z,y,2) = (2y3, 2% + yz,x) through the triangle F with the vertices (1,0,0), (0,1,0)
and (0,0,1).

3) The flux of V(z,y,2) = (y + 2%, zIn(1 — 22 + y?), Arctan(zyz)) through the surface F given by
z=1—2%—19% for 2> +¢y> < 1.

A Flux computed by means of Stokes’s theorem.

D Sketch the surface F and the boundary curve K and choose an orientation. (It has not been
possible for me to sketch the orientation of the figures). Finally, exploit that the flux according to
Stokes’s theorem is given by

(5) /(VXV)-de:/V~tds, where IC = “O0F”.
F K
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Figure 38:

Figure 39: The surface F of Example 5.2.2

I 1) The boundary curve is the circle in the XY-plane of centrum (0,0) and radius a. Choose the
parametric description

(z,y,2) = (a cosp,a sing,0),

v € 10,27,

the flux is according to (5) given by

for K in R? corresponding to a positive orientation. Since t = (—sin ¢, cos¢,0) and ds = a dyp,

/V~tds =
K

2

2) The boundary curve is the boundary of the triangle with e.g. the parametric description

Ki: (2,y,2)

(1 - t7t70)7

Ky : (:L’,y,Z):(O,lft,t),

K:S: (x7yaz):(t7071_t)7

2
/ (a®sin? @, a cos @, —a’ sin @ cos p) - (—sin @, cos p, 0)a dp
0

1
{—a3sin3g0—|—a2(:os2<p+0} dp=0+a*- =271 +0 = ma>.
0

t e [0,1],
t € [0,1],

t e 0,1],
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Figure 40: The surface F of Example 5.2.3.

where ds = v/2dt on each of the three subcurves. According to (5) the flux is given by

/(va)~ndS = V.-tds+ V- tds+ V- tds
F K1 Ks Ks

/1(2153,(1t)2,1t)-(1,1,0)dt
0
+ [ea-u.a-n0 - 01w
0
1 2 . —
+/O (0,£2,t) - (1,0, —1) dt

2 1 1
_ _ 943 _ )2 (1 — _
_ /O{ 23 + (1 t)}dt+/0{ (1 t)t}dt+/0( £)dt

/1{—2753 + (1 =t)* )1 =32 — (1 —t) —t}dt

1

! 2 1 4 2
/0{—2t3+2(t—1) —1}dt:[—§t +§(t—1)3—t]

1

0

3) The boundary curve K is the unit circle in the XY -plane. Choose the orientation corresponding
to the parametric description

(z,y,2) = (cosp,singp,0), ¢ €[0,27],
for K. Then
t = (—sinp, cosp,0) and ds = dep,

and the flux through F is then according to (5.2) given by

2 2m
1
/V~td5:/ (singa,0,0)~(fsinap,coscp,O)dcp:f/ sin2g0d<p:75027r:77r.
K 0 0
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Figure 41: The space curve K and its tangent at r (%)

Example 5.3 A space curve K is given by the parametric description
r(t) = (2cost,2sint, 4 + 2sin(2t)), teR.

1. Find a parametric description of the tangent of IC at the point r (g)

2. Show that KC lies on the surface F, given by the equation z = 4 + zy.

Let Ky be the restriction of K corresponding to the parameter interval [0, 2|, where this is run through
corresponding to increasing t. Furthermore, we have given the vector field

V(z,y,2) = (y,2,9> +22),  (v,y,2) €R®.
3. Find the circulation of the vector field along the curve K.
A Space curve; circulation along a closed curve.

D Find r/(¢) and the tangent corresponding to t = %

Put (x,y,z) = r(t) into the equation of F.
Try to apply Stokes’s theorem. Alternatively, compute directly the circulation.

I 1) From
r'(t) = (—2sint, 2 cost, 4 cos 2t)

follows that

r(%) - (22 55,4+2> = (V2,V/2,6)
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Figure 42: The surface F of equation z = 4 + xy for 2% +y% < 4

and

¢ (Z) - <_% Z. o) — (=v2,V2,0),

hence the equation of the tangent is

(z,y,2) = (V2= V2u, V2 + V2u,6) = (V2(1 —u),V2(1 +u),6), ucR.

2) Since
44+ x(t)y(t) =4 +4cost-sint =4+ 2sin2t = z,

the curve K lies on the surface F.
3) It follows from Stokes’s theorem that

/V~td5:/n~rotVdS,
K F

where
e, € e,
0 0 1o}
rot V : 0y o (2y,—1,0)

Y r  y?+2z
Since z = 4 + a2y, 22 +y? < 4, we get for the surface F that
0z 0z

gc d = =
E Y an 3y x,
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thus
N(“Lvy) = (7y7 -z, 1)
ALTERNATIVELY, (2,y, 2) = (u,v,4 + uv), thus
e, e, e,
N(U,U) = 1 0 v = (_U7_u71) = (_ya —l‘,l)-
0 1 wu

If we put B = {(z,y) | 2* + y* < 4}, then

/V-tds
K

/n-rot VdS:/N-rot V dzdey
F B

2m 2
/ (=2y* + x + 0) dedy = —2/ {/ (0? sin2<p—|—0) ng} dy
B 0 0

27 ,Q42 16
—2|—|-|—| =—-27-— = —8r.
IR
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ALTERNATIVELY a direct computation gives
2
/V-tds: V.r'(t)dt
K 0

2
= / (2sint, 2 cost, 4sin® t4+8+4sin 2t) - (—sint, 2 cost, 4 cos 2t)dt
0

2

{—4sin? t+4 cos® t+16 sin” t cos 2t 432 cos 2t 416 sin 2t cos 2t }dt

0

2m 2w
= 16/ sin? t cos 2t dt = 16/ sin? (2 cos®t — 1)dt
0 0

27
P
8/ sin22tdt—167r:8-77r — 167 = —8.
0

Example 5.4 Let a be a constant, and consider the vector field
V(z,y,2) = (ax® +zz4yz, ay? —zz—yz, a(z? —y*+2%)), (z,y,2) € R3.
1. Find div V.
2. Show that 'V is not a gradient field in R3 for any choice of a.
Let K denote the circle given by 22 + y? = a?, z = a.
3. Find the circulation of V along K; indicate the chosen orientation.
Let the domain Q2 C R3 be given by 22 +y? <a?, y>0,0< 2z < a.
4. Find the flux of V through 0f).

A Divergence, circulation and flux.

D Compute div V. Check ? for some ¢ and j. Find the circulation, e.g. by Stokes’a theorem.
Ty
Finally, apply Gaufy’s theorem to find the flux.

I 1) The divergence is
div V =20z + 2z + 2ay — 2z + 20z = 2a(z + y + 2).

2) Tt follows from

v _ z and ove _ —z

oy 9z 7
that

oy Vs

8—y % fOI‘ z 7& 0

The surface z = 0 does not contain inner points, thus V is not a gradient field for any value of
a.
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=

Figure 43: The curve K and its projection onto the (X, Y')-plane for a = 1.

3) It follows by the definition of the circulation that

/V-tds
K

:/ (aa2 cos? t+a? cos? t+a?sint, aa® sin? t —a? cos t—a’ sin t, aa’(cos® tfsin2+a)) .
0

2

=a

(—sint,cost,0) adt

2w

{ﬂ cos? tsint—costsint—sin? t+asin® ¢ cos t —cos? t —sin t cos t+0} dt

0

27
=a3/ (—sin2 t — cos? t) dt = —2ma’.
0

ALTERNATIVELY,
rot V.e, =

Choose F as the disc 22 4+ y? < a?

Tz + Yz

9
ox

0

éTy =—z—z=—-2z.

—xz — Yz

, z = a. Then we get by Stokes’s theorem that

j{ V.tdS = / rot V-.-e, dS = / (—2a)dS = —2a area(F) = —2ma®.
K F F

4) When we apply GauB’s theorem and 1), it follows that the flux is given by

/divVdQ:2a/(x+y+z)dQ:2a/(y+z)dQ
Q Q

2ca /

[219]

V -ndS

aa-2/ (a* — 2*)dzx + ama® -
0

4
3

VaT=z%
{/ ydy}dx+2a-
0

2

a
2

1 4
—aa4+§a7ra4:oza4 (——!—g).

3

Q

2 a
ﬂ/ zdz
2 Jo

1 1
= 2aa <a3 -3 a3) + 2 amat
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Figure 44: The body € for a = 1.

Example 5.5 Consider the space curve KC given by the parametric description

t
(z,y,2) = <1 + cost,sint, 2sin 2) , t € [0,27].

1. Find a parametric description of the tangent of IC at the point corresponding to t = T

2. Show that K lies on a sphere of centrum at (0,0,0), and find an equation of the sphere.

Furthermore, consider the surface F given by the parametric description

t
(x,y,2) = <1 + cost,sint, 2u sin 2) , (t,u) €10,27] x [0,1],

and the vector field V(x,y,z) = (x,y,2), (v,y,2) € R3.

3. Find the area of F.

4. Find the circulation of the vector field along the curve K.

A Space curve, surface area, circulation of a vector field.

D 1) First calculate r/(¢).

2) Show that 22 + 3% + 22 = r? > 0 and find r > 0.

4
I 1) We find

t
r'(t) = (— sint, cost, cos 5) , r’ (

)
3) Compute the surface area.
)

71'
2

)

1
75

Apply Stokes’s theorem. Alternatively the circulation is computed directly as a line integral.

).
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Figure 45: The curve .

Now, r (g) = (1,1, \/5), thus a parametric description of the tangent is given by

(1,1,\/§)+u<—1,0, %) ueR.
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2) Since
t
z(t)? +y(t)* + 2(t)? = (1 + cost)? + sin? t 4 4sin? 5
=14 2cost + cos®t +sin®t + 2(1 — cost)
=1+1+2=4=2%

it follows that /C lies on the sphere of centrum (0, 0,0) and radius 2.

Figure 46: The surface F.

3) Tt follows from

or (— sint,cost,u cos%) and @ = (0,0,2sin%>

ot ou
that
e, ey e,
: t
N(t,u) =| — sint cost wu cos 5 | =2sin 3 (cost,sint,0),
t
0 0 2sin —
sin 5
thus
Lt ot
IN(t,u)| = 251n§ ~1:2$1n§, te[0,2n], wel0,1].
Hence

1 2 t ¢ 2m
area(F) = / {/ ZSinidt} = {—4(:03 5} =4(1+1)=8.
o o 0

4) Since rot V = 0, it follows by Stokes’s theorem no matter how we choose the surface F; with
boundary curve K that

%V%:dt:/ n-rot Vds =0.
K Fi
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ALTERNATIVELY we get by the definition that
2 21
%V-tdt: V-r’(t)dt:/ r(t)-r'(t)dt
K 0 0

- /%i Lir@)2) de = L (ie@m)2 - 1x())2) = 0
“ o dt\2 — AT e
because the curve is closed.

ALTERNATIVELY it is possible though extremely tedious to insert the parametric description
and then reduce.

Example 5.6 Given the vector field
V(x,y,z) = (y3 —x2?, =3 4 y2?, 23) , (z,y,2) € R3.
1. Find the divergence <7 - V and the rotation 7 X V.
Let a be a positive constant, and let L denote the half spherical shell given by
z >0, a2§x2+y2+22§3a2.
2. Find the flux of V through OL.
Let C be the circle in the plane z = a of centrum (0,0, a) and radius a.
3. Find the absolute value of the circulation fc V -tds.
4. Check if there exists a vector field W : R® — R3, such that
V=vxW,
i the whole space.
5. Check if there exists a scalar field F : R? — R, such that V. = </ F in the whole space.

A Divergence, rotation, flux, circulation, vector potential, gradient field.
D Apply Gaufi’s theorem and Stokes’s theorem, whenever it is possible.

I 1) We get by some very simple calculations that

divV=vy-V=—2%422 4322 = 322

and
e, ey e,
0 0 0
vV XV =rotV-= p a 5 | = (—2yz, —2xz, —3z2% — 3y?).
y3 —xz? -3+ y22 23
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0 02 04 06 08 1 12 14 16

Figure 47: The meridian cut for a = 1 with the cut at height z.

2) It follows from Gauf’s theorem and the result of 1) that

/ V-ndS:/ dideQ:/3z2dQ.
OL L L

At height z € [0,a] the body L is cut in an annulus of the area
7(3a® — 2%) — w(a® — 2*) = 2ma®.

At height z € [a,v/3a] the body L is cut in a circle of area
7(3a* — 2?).

Hence by insertion,

a \/ga
V-ndS = / 322d0 = / 32% - 2na® dz + / 3221(3a® — 2%) dz
L 0 a

a V3a V3a
= 6ma’® / 22dz + 9ra? / 22dz — 371'/ 24 dz
0 a a

\/ga a \/ga
= 97m2/ 22dz — 37ra2/ 22dz — 37r/ 2Adz
0 0 a
= 3ma®-3V3a® —ma? - a® — gﬂ(9\/§ —1a

2
= 7ra5(9\/§—1—g7\/§+§>:

oL

g (18V/3 — 2)a®.

3) Put B = {(z,y) | #® + y*> < a®}. Then we get by Stokes’s theorem and the result of 1) that

%V-tds
c

/ rot V-ndmdy’ =
B

/ (—an7 —2za, —3z% — 3y2) -(0,0,1) dxdy
B

a 4 3 4
= 3/(x2—|—y2)dxdy=3~27r/ gz-gdg:67r.a—: .
B 0 4 2

4) Since div V = 322 # 0 for z # 0, there exists no vector potential W of V in all of the space.
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5) It follows from

ovy

OV1i _ 52 OVa _ g2
ay 3y and o 3z,
that
ovy  0Vs
— % —= f
5 e o @y #£0.0),

thus V is not a gradient field, and there exists no integral F' of V.
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Example 5.7 Given the vector fields

U(z,y,2) = (2* + ycosw,2” +sinz,y®),  V(r,y,2) = (y,2,2),

in the space R3.

1) Find the divergence and the rotation of both vector fields.

2) Find the fluz of U through the surface of the cube

{(z,y,2) ER*|0<2<1,0<y<1,0<2<1}.

3) Let a be a positive constant. Find the circulation of 'V along the circle in the (X, Z)-plane of
centrum at (a,0,2a) and radius a. Choose an orientation of the circle.

4) Find a vector potential for V.

A Vector analysis.

D Apply GauBi’s theorem and Stokes’s theorem.

I 1) By simple calculations,

div U = —y sinz,

rot U=

rot V=

224+ ycosx x4sinz vy

€1

€1

0

ox

€2

Figure 48: The circle of 3).

div V =0,
€9 €3
0 0
BN 5 | = (2y,2z,2x) = 2V,

€3

=(~1,-1,-1).
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1 1
In particular, V = v/ x <§ U>, thus 3 U is a vector potential of V (cf. 4)).

2) According to Gauf}’s theorem the flux of U through 9T is given by

U -ndS

. /T dideQz/Ol{/Ol{/ol(—y sina:)dac}dy}dz

1 1
1- [7]0 -[cos z]§ = 5 (1 —cosl).

3) According to Stokes’s theorem,

7( t-Vds:/ n-rotVdS:/(O,—l,O)~(—1,—1,—1)dS: arca(A) = a2,
OA A A

1
4) According to the result of 1), the field 5 U is a vector potential of V.

Example 4.8 Let p € R and b € R, be constants. consider the circle K given by 22 +1y% = b2, 2 = p;
the circle is run through in that direction which form a right hand turn with the Z-axis. Furthermore,
consider the vector field

- yz —Iz
W('T7y7z)_ (\/$2+y27\/$2+y2’

Denote the circulation of W along the oriented circle K by C(b,p).

vﬂ+f>, (z,y) # (0,0).

1) Show that C(b,p) = —2mpb.
2) Let V =rot W. Show that

V<x,y,z>—ﬁ<z+y,y—x,—z>, (2.) # (0,0).

3) Show that W is not a gradient field.

4) Show that W has zero divergence.

5) Let O be the surface of revolution which is introduced in Calculus 2¢-8, Example 1.13. Find the

flux
/ V -ndS,
o

where we must choose an orientation of O.

A Circulation, rotation, gradient field, divergence, flux.

D The circulation can be computed in various ways. The computation of the flux has also some
variants.

I 1) We have two variants.
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First variant. The definition of the circulation as a line integral.
We use the following parametric description of the circle IC,

r(t) = (x,y,2) = (b-cost,b-sint,p), t € [0,2n].

Then

r'(t) = b(—sint, cost,0),

and the circulation is according to the definition given by

27 :
Clb,p) = /W-tds:/ (bsmt p _beost p,b) -b(—sint, cost, 0) dt
K 0

b b

2m
= —pb {sin®t + cos®t + 0} dt = —2mpb.
0
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Second variant. Stokes’s theorem.
An application of Stokes’s theorem gives

/W~tds:/rotW~ndS,
K F

where F is the disc at height z = p and radius b, and where the unit normal vector is
parallel to the Z-axis.

The unit normal is trivially n = (0,0,1). then by 2),
rot W=1V.

By applying the expression of V, we obtain in polar coordinates

27‘(‘ b].
W-tds:/v.ndsz/ SR dS:—p/ / Z . odo S dp = —2mpb.
/IC F ]—'( \/x2+y2> 0 0o © 4

2) Let (z,y) # (0,0). Then

eI ey ez
B B B
V = rot W=y xW = oz dy 0z

z —xz
Y /2% 1 42

\/x2+y2 \/x2—|—y2

Y x
/z2+y2 ( /«I2+y2>
_ y r
B VEZ+y?r 22+ 2
z n 2z z n y2z
\/x2+y2 (\/w2+y2)3 /x2—|—y2 ( /x2+y2)3
y+z
1 y—u 1
) =V @+tyy-—r-2)
/(E2+y2 /{E2+y2( )
x2z+y22
) P R i
22 +y2

3) Suppose W was a gradient field, 7 F. Then
V=yxW=yxyF=0.
But V # 0, thus we conclude that W is not a gradient field.
4) By just computing,
0 z 0 Tz 0
e a‘(ﬁ) oy (ﬁ) 5 (V7 07)
xyz xyz

_(x2 +y2)3/2 - (_ (2 + y2)3/2

)—l—O:O.
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ALTERNATIVELY it follows that if U is defined by

2,2

3U = — (—l‘, Y, O) +Va?+ y2 (—y.x.z), (x’y) a (070)7

N
then
W =rot U=y xU,
and thus

divW=vy- (v xU)=0.

Figure 49: The surface O. The upper boundary curve Ky is oriented as a left hand screw, while the
lower boundary curve KCy is oriented as a right hand screw. Hence the normal vector field on O is
everywhere pointing away from the Z-axis.

5) Choose the orientation on @ as described in the caption of the figure. Then 6O = Ko — Ky,
where the minus sign in front of K; means that this circle is run through in the opposite
direction of the usual one, i.e. as a left handed screw.

There are two variants.

1. variant. Stokes’s theorem combined with 1).

We get by Stokes’s theorem,

/V~ndS = /(VXW)~ndS:j{ W.tds=— W .- tds+ W - tds
o o 50 K1 Ka

= —C(a,a)+ C(2a,—2a) = +27a - a + (+27 - 2a - 2a) = 107ma’.
Second variant. Surface integral.

The meridian curve has the equation

2
z:2a—9—,
a
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2
so we conclude that the tangent vector is (1, —Q> Hence the normal vector N = (20, a),
a

and thus the unit normal vector

1
n=————(2p,a).
a? + 402

Then the outgoing unit normal vector field of the surface O is

1
n(o, p) = ———= (20cos p,20sin p, a).
a? + 402

We have on O,
V =

z

—x,—2)

1
W(iﬂ‘ﬂ/yy

2
(gcoscp + psin g, psin p — pcos p, —2a + Q—)
a

. . 0 a)
cos p +sinp,sinyp —cosp, — —2 — | ,
a 0
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thence the integrand over O is written

f(z,y,2) = V-.n=

/a2 +492
1 2
S {39—2“—}.
Va2 4402 0

1 2
{2@ (cos2 +cos @ sin p+sin? ¢ —cos @ sin gp) +0—2 a_}
o

Finally, by inserting into a known formula of the surface integral over surfaces of revolution,

we get

/V-ndS
o

27_[_ 2a

2a 2 2 2
1 a / 40

—_— 39—2—}d o\/1+ —-do
/a {0 \/a2+492{ 0 SD} a?

= (392 - 2a2) do = 2% [g3 — 2a2g] ia

a Jq

2
- {8&3 —4a® — a4+ 2a3} = 10ma>.
a

Example 5.9 Let F be one eighth of a sphere given by

x2+y2+z2:a2, x>0, y>0, z2>0,

where a is a positive constant. Thus the boundary curve dF is composed of three circular arcs.

Also, consider the vector field

V(z,y,2) = (ay + yz, —azx + zx, 2> — 22y, (z,y,2) € R3.
1) Find the rotation 57 x V.
2) Show that V is not a gradient field.

3) Find the circulation

?{ V -tds,
5F

where we choose an orientation of 0F.

A Rotation, circulation, Stokes’s theorem.
D Sketch a figure. Apply Stokes’s theorem.

I 1) The rotation is

rot V. = yxV=

ox

ay +yz —axr+zr 22— 2y

= (—2z—=x,y+2y,—a+ zaz) = (3z, 3y, —2a).

123
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Figure 50: The surface F and the boundary curve §F for a = 1. On the surface F the unit normal
vector field is always directed away from (0,0,0), and the curve §F is oriented correspondingly, i.e.
from the X-axis towards the y-axis, then towards the z-axis and finally back to the z-axis.

2) Tt follows from rot V # 0 that V is not a gradient field.

3) Choose the orientation of 0F as described on the figure. Then the unit normal vector field on
F is pointing outwards, i.e.

nzl(x,y7z), for (z,y,2) € F.
a

Applying Stokes’s theorem we conclude that the circulation along 0F is

7{ V.tds = /n-rotVdS:/l(x,y,z)-(—?)x,3y,—2a)d5
SF F Fa

1
= 7/(—3.’1,'24—3:1/2—2042)(15:_2/ ZdSa
a Jr F

where if follows by the symmetry that

/x2d5:/y2ds.
F F

The following computations can be given in various variants.

First variant. If we first (i.e. innermost) at helght z and denote the circle by ¢, then

?{des = —2/zdS——2/ 5" Va2 —z22ds
5F
= —w/zx/a2—22ds ( zgds).
¢

Using the parametric description
0 = a Cos Y, z = a sinyp,

of ¢ we get ds = adyp, and the computations continue as follows,

7{ V.-tds = —7r/ asincp-acoscp~adg0:—7m3/ sin ¢ cos @ dp
5F 0 0
20 1%
= —mdd |22 — T
2 |, 2
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08

0.6

02

Figure 51: The meridian cut of F for a = 1. We have at height z that ¢ = va? — 22.

Second variant. The surface F is described in spherical coordinates by

T = a sinf cos p,

oe0Z],
y = a sinf sin p, weight: a?sin 6,
™
veo3]
z=a cosb, T2

hence by insertion,

]{ V- tds = —/226[52—2/2 /QGCOSG-GQSiHGdG de
5F F 0 0

= —92.1.43 sin” %:fzag.
2 2 |, 2

Third variant. Direct computation of the line integrals without the use of Stokes’s theorem.

First note that the boundary curve 6F is composed of the subcurves:

Ty (z,y,2) = (a cosp,a sing,0), ¢ € |0, g , with the unit tangent vector t = (— sin ¢, cos ¢, 0),
and the line element ds = a dy.

[y (x,y,2) = (0,a cosg,a sing), ¢ € —O, g , with the unit tangent vector t = (0, — sin ¢, cos ¢),
and the line element ds = a dy,

Is: (z,y,2) = (asing,0,a cosyp), ¢ € _0, g , with the unit tangent vector t = (cos ¢, 0, — sin ¢)

and the line element ds = a dp.
We get by insertion,

j{ V~tds:/ +/ +/ (1t + yz, —ax + 2z, 2° — 2xy) - tds.
SF ry Iz Is

Download free books at BookBooN.com

125



Please click the advert

Calculus 2¢-9

Stokes’s theorem

The integrals are computed one at a time,

3
V-tds = / (a2 sin o, —a? cos ¢, —2a? sin ¢ cos cp) - (=siny, cosp,0)adp
r, 0
3
= / a’ (—sinzgo—cos2 go) dp = —Ea‘q’,
O 2
'3
V.-tds = / ((1,2 cos p+a? sin g cos @, 0, a? sin® <p) (0, — sin g, cos p) adyp
Ty 0
= / a®sin® pcos pdp =3 i d = —d?,
Jo 3 1o 3
3
V.-tds = / (0, —a? sin p+a? sin ¢ cos @, a? cos? cp) - (cos p, 0, —sin ) adp
T3 0
5 ) ) 3 5 1
= / (—a‘3 cos? gosingo) do = a® {CO% 99} =——d
0 3 o 3
Summarizing,
1 1
V-tds:—zag—i-fag— a3 = T g,
SF 2 3 3 2
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Calculus 2¢-9 Stokes’s theorem

Example 5.10 Consider the vector field
Vi(x,y,z) = (xz,yz + x2z,2x2z — yz), (z,y,2) € R,
1. Find the divergence <7 - V and the rotation 7 X V.
Let A denote the half ball given by
x2+y2—|—22§02, z >0,
where ¢ is a positive constant, and let n be the outwards unit normal vector of the surface OA.

2. Find the flux

b = V -ndS.
0A

3. The surface A is the union of a disc F1 and a half sphere F5. Find the fluzes

b, = V.-ndS and o9 = V -ndS.
F1 Fa

Let KC denote a circle in the plane of equation z =b. We denote the centrum of the circle by (x, yo,b),
and its radius is called a.

4. Choose an orientation of the circle KC. Then find the circulation

C=][V~tds.
K

A Divergence, rotation, flux, circulation.

D Follow the guidelines which give the simplest variant.

Figure 52: The half ball A for ¢ = 1.
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Calculus 2¢-9 Stokes’s theorem

I 1) By just computing we get

divV=xy-V=z42+4+2x—y=2r—y+ 2z

and
e, ey e,
0 0 0
rot V. = Vv X V = % a—y &

rz yz+xz 2x2 — Yz
= (—z—y—az,x—2w,2)=(—r—y—2—x,2).
2) Then by Gauf’s theorem,

o = / V~ndS:/dideQ:/(Qx—y—i-Zz)dQ
DA A A

T o4

0+0+2/ZdQ:2~ZC4: .
A

4 2
3) Now n = (0,0,—1) on Fy, where also z = 0. Hence

o, =/ (0,0,0) - ndS = 0.
F1
Then apply the result of 2) and that ® = &1 + Py, to get
™
Py =& — Py :§c4.

4) Choose the orientation such that the projection onto the (X, Y')-plane has a positive orientation.
Then the corresponding unit normal vector is n = (0,0, 1).

By Stokes’s theorem, the circulation along I (which encircles the disc B) is given by

C = ?{Vids:/n~vXVdS:/(0,0,1)~(—x—y—b,—x,—b)d8’
K B B

—b/ dS = —b-area(B) = —b-m-a’.
B
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